理论基础

轮换与对换

概念:把 $S$ 中的元素 $i_1$ 变成 $i_2$,$i_2$ 变成 $i_3$ ... $i_k$ 又变成 $i_1$,并使 $S$ 中的其余元素保持不变的置换称为循环,又称轮换,记为 $(i_1, i_2,...,i_k)$,$k$ 称为循环长度,特别地,循环长度为2的循环称为对换

定理:

(1)任一置换可表示成若干个无公共元素的循环之积

(2)任一置换可表示成若干个对换之积,且对换个数的奇偶性不变。

八数码中的置换

若一个置换可以分解成奇数个对换之积称为奇置换,否则称为偶置换.

即进行如下置换:

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 0 & 12 & 13 & 14 & 11 & 15\\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 0
\end{pmatrix}$$

等价于轮换之积:

$\begin{pmatrix}
0 & 11 & 15\\
11 & 15 & 0
\end{pmatrix} = \left ( 0 \  11 \ 15\right ) = (0 \ 11)(0 \ 15)$

当置换的奇偶性与空格移动的奇偶性相同则有解,反之无解。

这是一个偶置换,而空格移动到右下角也是偶数步,所以是有解的。

然而,求两个状态的置换不方便实现,对换的奇偶性等价于逆序对奇偶性(gugu,我猜的)

逆序对

如果我们从上到下、从左到右展开成一维数组,某状态的奇偶性定义为逆序对(不包括0的)总数的奇偶性。

首先,空格的左右移动不会改变逆序对奇偶性

列数为奇数时,上下移动不改变奇偶性

列数为偶数时,上下移动奇偶取反。

大概的证明如下:

题目

由于是15数码,列数为偶数,且终态逆序对为偶数,所以只需 y%2=pair%2,y为空格到右下角的纵距离,pair为初始状态的逆序对数。

值得一提的是,题目有个120步的迷惑条件,维基百科有:十五数码的最优解至多80步,而八数码推盘的最优解至多31步。(数字推盘游戏

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std; const int maxn = ;
int a[maxn]; struct BIT{
int C[maxn], n;
void init(int n)
{
this->n = n;
memset(C, , sizeof(C));
// for (int i = 1; i <= n; i++)
// add(i, a[i]);
}
int lowbit(int x)
{
return x & -x;
}
int sum(int x)
{
int ret = ;
while (x > )
{
ret += C[x];
x -= lowbit(x);
}
return ret;
}
void add(int x, int d)
{
while (x <= n)
{
C[x] += d;
x += lowbit(x);
}
}
int getPair()
{
int ret = ;
for(int i = n;i >=;i--)
{
ret += sum(a[i] - );
add(a[i], );
}
return ret;
}
}bit; int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int cnt = , y;
for(int i = ;i <= ;i++)
{
int tmp;
scanf("%d", &tmp);
if(!tmp) y = - (i-)/;
else a[++cnt] = tmp;
}
bit.init(cnt); //printf("%d %d %d\n", bit.n, bit.getPair(), y);
if(y% == bit.getPair()%) printf("Yes\n");
else printf("No\n");
} return ;
}

参考链接:http://www.voidcn.com/article/p-wsmvxpvl-bbo.html

2019HDU多校第四场 Just an Old Puzzle ——八数码有解条件的更多相关文章

  1. 2019HDU多校第四场 K-th Closest Distance ——主席树&&二分

    题意 给定 $n$ 个数,接下来有 $q$ 次询问,每个询问的 $l, r, p, k$ 要异或上一次的答案,才是真正的值(也就是强制在线).每次询问,输出 $[l, r]$ 内第 $k$ 小的 $| ...

  2. [2019HDU多校第四场][HDU 6617][D. Enveloping Convex]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6617 题目大意:给出一凸包\(P\),求最小的与\(P\)相似且对应边平行的多边形,使得题目给出的\( ...

  3. 2019HDU多校第四场题解

    1001.AND Minimum Spanning Tree 传送门:HDU6614 题意:给你一个又n个点的完全图,点编号从1~n,每条边的权值为被连接的两点编号按位与后的值.现在要你找到最小生成树 ...

  4. 2018 HDU多校第四场赛后补题

    2018 HDU多校第四场赛后补题 自己学校出的毒瘤场..吃枣药丸 hdu中的题号是6332 - 6343. K. Expression in Memories 题意: 判断一个简化版的算术表达式是否 ...

  5. 牛客多校第四场sequence C (线段树+单调栈)

    牛客多校第四场sequence C (线段树+单调栈) 传送门:https://ac.nowcoder.com/acm/contest/884/C 题意: 求一个$\max {1 \leq l \le ...

  6. 【2019HDU多校】第九场1006/HDU6685-Rikka with Coin——位运算打表

    题目链接 题目大意 使用10.20.50.100元面额的硬币能分别组成题目给出的面额,需要最少的硬币个数 分析 一开始队友想用一堆if-else解决问题,然后WA了无数发-- 我想到了一种比较简单的打 ...

  7. 2019HDU多校第七场 HDU6646 A + B = C 【模拟】

    一.题目 A + B = C 二.分析 比较考验码力的题. 对于$c$,因为首位肯定不为0,那么$a$或者$b$至少有一个最高位是和$c$平齐的,或者少一位(相当于$a$+$b$进位得到). 那么这里 ...

  8. 2014多校第四场1006 || HDU 4902 Nice boat (线段树 区间更新)

    题目链接 题意 : 给你n个初值,然后进行两种操作,第一种操作是将(L,R)这一区间上所有的数变成x,第二种操作是将(L,R)这一区间上所有大于x的数a[i]变成gcd(x,a[i]).输出最后n个数 ...

  9. 2014多校第四场1005 || HDU 4901 The Romantic Hero (DP)

    题目链接 题意 :给你一个数列,让你从中挑选一些数组成集合S,挑另外一些数组成集合T,要求是S中的每一个数在原序列中的下标要小于T中每一个数在原序列中下标.S中所有数按位异或后的值要与T中所有的数按位 ...

随机推荐

  1. SQLite基础-1.SQL简介

    目录 一.SQLite简介 二.SQLite命令 三.SQLite安装 在 Windows 上安装 SQLite 四.SQLite 点命令 一.SQLite简介 最近在使用Python+Flask框架 ...

  2. JDBC 注册驱动,获取连接

    jdbc 动力节点视频教程 JDBC编程六步 1.注册驱动(作用:告诉Java程序,即将要连接的是哪个品牌的数据库) 2.获取连接 (表示JVM进程和数据库进程之间的通道打开了,属于进程间的通信,重量 ...

  3. Redis键的基本操作

    1.Redis键的键名查询 ·命令名称:KEYS ·语法:KEYS pattern ·Pattern的用法: ? 任意一个字符 * 任意个任意字符 [ae] a或者e [^ae] 除了a和e [a-c ...

  4. 怎样绑定this

    有三种方法: 1. Function.prototype.call();  2. Function.prototype.apply();  3. Function.prototype.bind(); ...

  5. (一)SpringBoot之简介和安装插件以及HelloWorld第一个程序

    一.简介 Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的 ...

  6. Thymeleaf 模板使用 Error resolving template "/home", template might not exist or might not be accessible by any of the

    和属性文件中thymeleaf模板的配置相关 1.配置信息 spring.thymeleaf.prefix=classpath:/templates/ spring.thymeleaf.suffix= ...

  7. Intellij IDEA 快捷键大全【转】

    IntelliJ Idea 常用快捷键列表 Ctrl+Shift + Enter,语句完成 “!”,否定完成,输入表达式时按 “!”键 Ctrl+E,最近的文件 Ctrl+Shift+E,最近更改的文 ...

  8. springboot启动流程(六)ioc容器刷新前prepareContext

    所有文章 https://www.cnblogs.com/lay2017/p/11478237.html prepareContext方法核心逻辑 上一篇文章中,我们通过createApplicati ...

  9. vue 2.0 + 如何实现加入购物车,小球飞入的动画

    github源码地址:https://github.com/13476075014/node-vue/tree/master/mynodeproject/13.sell/sell 在移动端经常会有加入 ...

  10. $.ajax()属性详解

    $.ajax()方法详解 jquery中的ajax方法参数总是记不住,这里记录一下. 1.url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址. 2.type: 要求为Strin ...