题目描述

一个餐厅在相继的 N 天里,每天需用的餐巾数不尽相同。假设第 iii 天需要 ri​块餐巾( i=1,2,...,N)。餐厅可以购买新的餐巾,每块餐巾的费用为 p 分;或者把旧餐巾送到快洗部,洗一块需 m 天,其费用为 f 分;或者送到慢洗部,洗一块需 n 天(n>m),其费用为 sss 分(s<fs<fs<f)。

每天结束时,餐厅必须决定将多少块脏的餐巾送到快洗部,多少块餐巾送到慢洗部,以及多少块保存起来延期送洗。但是每天洗好的餐巾和购买的新餐巾数之和,要满足当天的需求量。

试设计一个算法为餐厅合理地安排好 N 天中餐巾使用计划,使总的花费最小。编程找出一个最佳餐巾使用计划。

输入格式

由标准输入提供输入数据。文件第 1 行有 1 个正整数 N,代表要安排餐巾使用计划的天数。

接下来的 NNN 行是餐厅在相继的 N 天里,每天需用的餐巾数。

最后一行包含5个正整数p,m,f,n,s 是每块新餐巾的费用; m是快洗部洗一块餐巾需用天数; f是快洗部洗一块餐巾需要的费用; n 是慢洗部洗一块餐巾需用天数; s 是慢洗部洗一块餐巾需要的费用。

输出格式

将餐厅在相继的 N 天里使用餐巾的最小总花费输出

输入输出样例

输入 #1
3
1 7 5
11 2 2 3 1
输出 #1
134

说明/提示

N<=2000

ri<=10000000

p,f,s<=10000

时限4s

  

这是一道最小费用(费用指单价)最大流的题目。

首先,我们拆点,将一天拆成晚上和早上,每天晚上会受到脏餐巾(来源:当天早上用完的餐巾,在这道题中可理解为从原点获得),每天早上又有干净的餐巾(来源:购买、快洗店、慢洗店)。

1.从原点向每一天晚上连一条流量为当天所用餐巾x,费用为0的边,表示每天晚上从起点获得x条脏餐巾。

2.从每一天早上向汇点连一条流量为当天所用餐巾x,费用为0的边,每天白天,表示向汇点提供x条干净的餐巾,流满时表示第i天的餐巾够用 。 3.从每一天晚上向第二天晚上连一条流量为INF,费用为0的边,表示每天晚上可以将脏餐巾留到第二天晚上(注意不是早上,因为脏餐巾在早上不可以使用)。

4.从每一天晚上向这一天+快洗所用天数t1的那一天早上连一条流量为INF,费用为快洗所用钱数的边,表示每天晚上可以送去快洗部,在地i+t1天早上收到餐巾 。

5.同理,从每一天晚上向这一天+慢洗所用天数t2的那一天早上连一条流量为INF,费用为慢洗所用钱数的边,表示每天晚上可以送去慢洗部,在地i+t2天早上收到餐巾 。

6.从起点向每一天早上连一条流量为INF,费用为购买餐巾所用钱数的边,表示每天早上可以购买餐巾 。 注意,以上6点需要建反向边!3~6点需要做判断(即连向的边必须<=n)

代码:

include<cstdio>
#include<queue>
#include<cstring>
#include<queue>
#include<algorithm>
#define INF 2147483647
#define LL long long
using namespace std;
queue<int> f;
int n,m,m1,t1,m2,t2,len=-1,st,ed;
struct node{int x,y,c,d,next;} a[100000];
int b[100000],last[100000],pre[100000],pos[100000],p[100000];
LL dis[100000];
bool bz[100000];
void ins(int x,int y,int c,int d)
{
a[++len].x=x;a[len].y=y;a[len].c=c;a[len].d=d;a[len].next=last[x];last[x]=len;
a[++len].x=y;a[len].y=x;a[len].c=0;a[len].d=-d;a[len].next=last[y];last[y]=len;
}
bool spfa()
{
memset(bz,true,sizeof(bz));
bz[st]=false;
memset(dis,63,sizeof(dis));
dis[st]=0;
p[st]=INF;
f.push(st);
while(!f.empty())
{
int x=f.front();
bz[x]=true;
for(int i=last[x];i>-1;i=a[i].next)
{
int y=a[i].y;
if(a[i].c>0&&dis[y]>dis[x]+a[i].d)
{
dis[y]=dis[x]+a[i].d;
pos[y]=x;
pre[y]=i;
p[y]=min(p[x],a[i].c);
if(bz[y])
{
f.push(y);
bz[y]=false;
}
}
}
f.pop();
}
return dis[ed]<4557430888798830399;
}
LL flow()
{
LL ans=0;
while(spfa())
{
ans+=p[ed]*dis[ed];
for(int i=ed;i!=st;i=pos[i])
{
a[pre[i]].c-=p[ed];
a[pre[i]^1].c+=p[ed];
}
}
return ans;
}
int main()
{
int x;
scanf("%d",&n);
st=0,ed=2*n+1;
memset(last,-1,sizeof(last));
for(int i=1;i<=n;i++)
{
scanf("%d",&x);
ins(st,i,x,0);//每天晚上从起点获得x条脏餐巾
ins(i+n,ed,x,0);//每天白天,向汇点提供x条干净的餐巾,流满时表示第i天的餐巾够用
}
scanf("%d %d %d %d %d",&m,&t1,&m1,&t2,&m2);
for(int i=1;i<=n;i++)
{
if(i+1<=n) ins(i,i+1,INF,0);//每天晚上可以将脏餐巾留到第二天晚上
if(i+t1<=n) ins(i,i+n+t1,INF,m1);//每天晚上可以送去快洗部,在地i+t1天早上收到餐巾
if(i+t2<=n) ins(i,i+n+t2,INF,m2);//每天晚上可以送去慢洗部,在地i+t2天早上收到餐巾
ins(st,i+n,INF,m);//每天早上可以购买餐巾
}
printf("%lld",flow());
}

【luogu1251】餐巾计划问题--网络流建模,费用流的更多相关文章

  1. 【Luogu】P1251餐巾计划(上下界费用流)

    题目链接 学了一下上下界费用流,似乎很nb.但是我说得不好,所以这里给出博客链接. 某dalao的博客 然后这道题的解法就是先用上下界费用流的建图方式连早上和晚上之间的那条边,保证当天一定会有r条或以 ...

  2. Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流)

    Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流) Description 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,-,N).餐厅可以从三种途径获得餐巾. ...

  3. Luogu 2762 太空飞行计划 / Libre 6001 「网络流 24 题」太空飞行计划 (网络流,最大流)

    Luogu 2762 太空飞行计划 / Libre 6001 「网络流 24 题」太空飞行计划 (网络流,最大流) Description W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行 ...

  4. 【BZOJ2324】[ZJOI2011]营救皮卡丘(网络流,费用流)

    [BZOJ2324][ZJOI2011]营救皮卡丘(网络流,费用流) 题面 BZOJ 洛谷 题解 如果考虑每个人走的路径,就会很麻烦. 转过来考虑每个人破坏的点集,这样子每个人可以得到一个上升的序列. ...

  5. Libre 6012 「网络流 24 题」分配问题 (网络流,费用流)

    Libre 6012 「网络流 24 题」分配问题 (网络流,费用流) Description 有n件工作要分配给n个人做.第i个人做第j件工作产生的效益为\(c_{ij}\).试设计一个将n件工作分 ...

  6. 【BZOJ1449】[JSOI2009]球队收益(网络流,费用流)

    [BZOJ1449][JSOI2009]球队收益(网络流,费用流) 题面 BZOJ 洛谷 题解 首先对于一支队伍而言,总共进行多少场比赛显然是已知的,假设是\(n_i\)场,那么它的贡献是:\(C_i ...

  7. 洛谷P4003 无限之环(infinityloop)(网络流,费用流)

    洛谷题目传送门 题目 题目描述 曾经有一款流行的游戏,叫做 Infinity Loop,先来简单的介绍一下这个游戏: 游戏在一个 n ∗ m 的网格状棋盘上进行,其中有些小方格中会有水管,水管可能在格 ...

  8. BZOJ3291Alice与能源计划——匈牙利算法+模拟费用流

    题目描述 在梦境中,Alice来到了火星.不知为何,转眼间Alice被任命为火星能源部长,并立刻面临着一个严峻的考验.为 了方便,我们可以将火星抽象成平面,并建立平面直角坐标系.火星上一共有N个居民点 ...

  9. HDU 3667 Transportation(网络流之费用流)

    题目地址:HDU 3667 这题的建图真是巧妙...为了保证流量正好达到k.须要让每一次增广到的流量都是1,这就须要把每一条边的流量都是1才行.可是每条边的流量并非1,该怎么办呢.这个时候能够拆边,反 ...

随机推荐

  1. 解决git下载很慢的问题

    通过官网在下载git的时候发现网速只有几十K,淘宝有一个镜像的网站 可以提供下载https://npm.taobao.org/mirrors/git-for-windows/

  2. linux命令行删除N天前的数据的命令

    命令:  find . -mtime +N -type f -name "*.log.*" -exec rm -f {} \; 简单解释: find .查询  ; -mtime 规 ...

  3. JS ES6中export和import详解

    1.Export 模块是独立的文件,该文件内部的所有的变量外部都无法获取.如果希望获取某个变量,必须通过export输出, // profile.js export var firstName = ' ...

  4. Angular Material 学习笔记 Chips

    依据 material guidelines, chips 可以用来做 filter https://material.io/design/components/chips.html#filter-c ...

  5. flutter从入门到精通五

    在flutter的世界里,一切都是Widget,图像,文本,布局模型等等,一切都是Widget flutter中,尽量将Widget放在MaterialApp.其封装了所需要的一些Widget,Mat ...

  6. 音视频入门-05-RGB-TO-BMP使用开源库

    * 音视频入门文章目录 * RGB-TO-BMP 回顾 将 RGB 数据转成 BMP 图片: 了解 BMP 文件格式 准备 BMP 文件头信息 准备 BMP 信息头 BMP 存储 RGB 的顺序是 B ...

  7. linux的scp命令可以在linux服务器之间复制文件和目录

    scp是secure copy的简写,用于在Linux下进行远程拷贝文件的命令,和它类似的命令有cp,不过cp只是在本机进行拷贝不能跨服务器,而且scp传输是加密的.可能会稍微影响一下速度.当你服务器 ...

  8. 【转载】 腾讯云通过设置安全组禁止某些IP访问你的服务器

    有时候我们在运维网站的过程中会发现一些漏洞扫描者的IP信息,或者个人爬虫网站的IP信息,此时我们想禁止掉这些IP访问到你的服务器,可以通过腾讯云的安全组功能来设置禁止这些IP访问你的服务器,也可以通过 ...

  9. ubuntu18.04安装wine

    wine是一个兼容层,可以从多平台(linux,macos,等)运行windows应用. Wine (Wine Is Not an Emulator)[即Wine不是一个模拟器]是一个在Linux和U ...

  10. [转]理解Linux的性能

    来源:http://www.linuxfly.org/post/114/ [转]理解Linux的性能       项目中常遇到需要对目前运行的系统进行效率分析,或碰到客户咨询如何优化系统的效率问题.更 ...