给出数 $n$
记 $f(x)$ 表示 $x$ 的因子和
求出所有 $x$ 使得 $f(x) = n$
考虑 $x = p_1 ^{a_1} * p_2 ^ {a_2} * \cdots * p_k ^ {a_k}$
那么 $f(x) = (1 + p_1 + p_1 ^ 2 + \cdots + p_1 ^ {a_1}) * (1 + p_2 + p_2 ^ 2 + \cdots + p_2 ^ {a_2}) * \cdots * (1 + p_k + p_k

^ 2 + \cdots + p_k ^ {a_k})$
因此可以爆搜枚举 $p, a$
Dfs(Now_result, prime_pos, x_remind) {}
分别表示
1.当前结果,即枚举到的素数的指数次幂的乘积,即 $p_i ^ {a_i}$ 的乘积 
2.当前枚举到的素数位置 首先要求出 $1e5, \sqrt(limit)$ 内的素数
3.给出的 $x$ 在枚举了之前的数后还剩多少
对于答案的录入
1.如果 x_remind = 1 ,相当于枚举到了这样一种形式 $() * () * () * p_i ^ 0$, 显然当前 Now_result 可以录入.
2.如果 x_remind - 1 是一个 大于等于 Prime[Prime_pos] 的素数,显然 (x_remind - 1) * Now_result 可以录入.
考虑这样的话我们已经枚举到了这样的一种形式 $() * () * () * (p_i + 1)$, 所以还原之前的数就是 p_i * Now_result.

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring> using namespace std; #define gc getchar() inline int read() {
int x = ; char c = gc;
while(c < '' || c > '') c = gc;
while(c >= '' && c <= '') x = x * + c - '', c = gc;
return x;
} const int N = 1e5 + ; #define LL long long LL Prime[N], Mark[N], Ans_js;
LL Answer[N], tot, n; void Get_prime() {
for(int i = ; i <= N - ; i ++) {
if(!Mark[i]) Prime[++ tot] = i;
for(int j = ; j <= tot && Prime[j] * i < N; j ++) {
Mark[Prime[j] * i] = ;
if(i % Prime[j] == ) break;
}
}
} bool Is_prime(LL x) {
if(x == ) return ;
for(int i = ; Prime[i] * Prime[i] <= x; i ++) {
if(x % Prime[i] == ) return ;
}
return ;
} void Dfs(LL Now_result, int prime_pos, LL x_remind) {
if(x_remind == ) {
Answer[++ Ans_js] = Now_result;
return ;
}
if(x_remind - >= Prime[prime_pos] && Is_prime(x_remind - )) {
Answer[++ Ans_js] = (x_remind - ) * Now_result;
}
for(int i = prime_pos; Prime[i] * Prime[i] <= x_remind; i ++) {
for(LL tmp = Prime[i] + , imp = Prime[i]; tmp <= x_remind; imp *= Prime[i], tmp += imp) {
if(x_remind % tmp == ) Dfs(Now_result * imp, i + , x_remind / tmp);
}
}
} int main() {
Get_prime();
while(scanf("%lld", &n) == ) {
Ans_js = ;
Dfs(, , n);
sort(Answer + , Answer + Ans_js + );
cout << Ans_js << "\n";
for(int i = ; i < Ans_js; i ++) cout << Answer[i] << " ";
if(Ans_js) cout << Answer[Ans_js] << "\n";
}
return ;
}

bzoj 3629的更多相关文章

  1. bzoj 3629 [JLOI2014]聪明的燕姿(约数和,搜索)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3629 [题意] 给定S,找出所有约数和为S的数. [思路] 若n=p1^a1*p2^a ...

  2. bzoj 3629 [JLOI2014]聪明的燕姿——约数和定理+dfs

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3629 如果要搜索,肯定得质因数分解吧:就应该朝这个方向想. **约数和定理: 对于任意一个大 ...

  3. [BZOJ 3629][ JLOI2014 ]聪明的燕姿

    这道题考试选择打表,完美爆零.. 算数基本定理: 任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积N=P₁^a₁ P₂^a₂…Pn^an,这里P₁<P₂<…<Pn均为质数, ...

  4. bzoj 3629 聪明的燕姿 约数和+dfs

    考试只筛到了30分,正解dfs...... 对于任意N=P1^a1*P2^a2*......*Pn^an, F(N)=(P1^0+P1^1+...+P1^a1)(P2^0+P2^1+...+P2^a2 ...

  5. BZOJ 3629 JLOI2014 聪明的燕姿 约数和+DFS

    根据约数和公式来拆s,最后再把答案乘出来,我们发先这样的话递归层数不会太大每层枚举次数也不会太多,然而我们再来个剪枝就好了 #include<cstdio> #include<ios ...

  6. bzoj 3629: [JLOI2014]聪明的燕姿【线性筛+dfs】

    数论+爆搜 详见这位大佬https://blog.csdn.net/eolv99/article/details/39644419 #include<iostream> #include& ...

  7. BZOJ 3629 约数和定理+搜索

    呃呃 看到了这道题 没有任何思路-- 百度了一发题解 说要用约数和定理 就查了一发 http://baike.so.com/doc/7207502-7432191.html (不会的可以先学习一下) ...

  8. LOJ 2234/BZOJ 3629 聪明的燕姿(数论+DFS)

    题面 传送门 分析 看到约数之和,我们首先想到约数和公式 若$ x=\prod_{i=1}^{n}p_i^{k_i} \(,则x的约数和为\) \prod_{i=1}^{n} \sum_{j=0}^{ ...

  9. 【BZOJ】初级水题列表——献给那些想要进军BZOJ的OIers(自用,怕荒废了最后的六月考试月,刷刷水题,水水更健康)

    BZOJ初级水题列表——献给那些想要进军BZOJ的OIers 代码长度解释一切! 注:以下代码描述均为C++ RunID User Problem Result Memory Time Code_Le ...

随机推荐

  1. littleFS在RT1052移植笔记

    环境:rt1052单片机+16G tf卡 为什么使用littleFS? NXP官方SDK支持! 先进的损耗平衡功能(wear leveling)可提供最长的快闪及内存寿命及最大的使用量.因为FALSH ...

  2. AJAX调用案例随笔(个人观看使用)

    <script type="text/javascript"> /*var contextpath = "http://192.168.0.103:8080/ ...

  3. 处理ajax数据;数据渲染(细节)

    AJAX 是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术. 什么是 AJAX ? AJAX = 异步 JavaScript 和 XML. AJAX 是一种用于创建快速动态网页的技术. 通 ...

  4. Springmvc的@ResponseBody方法返回Model时404:跳转jsp视图

    我有一个控制器方法,添加了@ResponseBody注解 @GetMapping(value = "/users") @ResponseBody public Map<Str ...

  5. windows + Eclipse 汉化

    https://www.eclipse.org/babel/downloads.php 下载Eclipse 对应版本 汉化包解压 复制文件夹里的内容到eclipse 文件夹下对应的文件里 重启ecli ...

  6. C# async 和 await 理解

    C# async 和 await 理解 先假设如下场景: 主函数 Main,循环等待用户输入: 计算函数 Cal,耗时计算大量数据: class Test { static int Main(stri ...

  7. Android 在同一台设备上安装多个同一项目的apk

    如果设备上已经安装了一个apk,再次安装这个apk就会提示覆盖前面的应用 解决办法: 方法一:手动改包名 不好改,改了几次都不成功(可能是代码在svn管理的原因,改完后文件夹里的代码就没了),确实不实 ...

  8. Redis 知识 整理

    简介 安装 启动 注意事项 使用命令 通用命令 数据结构 字符串(string) 哈希(hash) 队列(list) 集合(set) 有序集合(zset) 位图(bitcount) 事务 订阅与发布 ...

  9. 【leetcode】513.Find Bottom Left Tree Value

    原题 Given a binary tree, find the leftmost value in the last row of the tree. Example 1: Input: 2 / 1 ...

  10. Gitlab CI/CD任务一直处于pending

    在注册Runner时候这里输入了tag,这里指的是runner的标签,可以设置多个  ,分别用 ,号分割 .gitlab-ci.yml文件中 stages: - pull - package - bu ...