luogu P5504 [JSOI2011]柠檬
bgm(雾)
首先是那个区间的价值比较奇怪,如果推导后可以发现只有左右端点元素都是同一种\(s_x\)的区间才有可能贡献答案,并且价值为\(s_x(cnt(x)_r-cnt(x)_{l-1})^2\),这是因为如果选出来的这种元素的端点的左右两边还有其他元素,那么显然的把那些其他的元素另外划分在别的区间里可以获得更优的答案
然后现在就可以\(O(n^2)\)了,转移大概为\(f_i=\min_{j<i,s_j=s_i} f_{j-1}+s_i(cnt(s_i)_i-cnt(s_i)_{j-1})^2\).考虑固定\(j\),随着\(i\)的右移,\(j\)位置的贡献是要比一个\(>j\)的\(k\)位置的贡献减少速度更快的,如果在某个位置\(j\)比\(k\)更优,那么以后\(k\)都不会更优了.所以考虑用单调栈维护这些决策点,在转移的时候如果栈顶下面的元素比栈顶元素更优了就弹栈顶,这个判断一个元素比另一个更优的时刻可以看做是维护凸壳,然后求一下直线交点.转移时用栈顶转移,接着把这个位置的dp值插入单调栈
不过这样做可能会出现栈顶下面两个元素比栈顶元素更优的时刻 要比 栈顶下面一个元素比栈顶元素更优的时刻 要早的情况,可以发现这种情况下栈顶下面一个元素就一定不优了,所以在插入元素的时候弹掉不优的就好了
#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double
using namespace std;
const int N=1e5+10,M=1e4+10;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
struct line
{
db k,b;
}li[N];
db crs(line aa,line bb){return (bb.b-aa.b)/(aa.k-bb.k);}
int n,a[N],nt[N],bk[M],s[N];
LL f[N];
vector<int> stk[M];
vector<int>::iterator it;
int main()
{
n=rd();
for(int i=1;i<=n;++i) a[i]=rd();
li[0].k=li[0].b=0;
stk[a[1]].push_back(0);
for(int i=1;i<=n;++i)
nt[i]=bk[a[i]],s[i]=s[nt[i]]+1,bk[a[i]]=i;
for(int i=1;i<=n;++i)
{
int x=a[i],nn=stk[x].size();
while(nn>1&&crs(li[stk[x][nn-1]],li[stk[x][nn-2]])<=(db)s[i]) --nn,stk[x].pop_back();
it=--stk[a[i]].end();
f[i]=(LL)li[*it].k*s[i]+(LL)li[*it].b+1ll*a[i]*s[i]*s[i];
li[i].k=-2ll*a[i+1]*s[nt[i+1]],li[i].b=f[i]+1ll*a[i+1]*s[nt[i+1]]*s[nt[i+1]];
x=a[i+1],nn=stk[x].size();
while(nn>1&&crs(li[stk[x][nn-2]],li[i])<=crs(li[stk[x][nn-1]],li[i])) --nn,stk[x].pop_back();
stk[x].push_back(i);
}
printf("%lld\n",f[n]);
return 0;
}
luogu P5504 [JSOI2011]柠檬的更多相关文章
- P5504 [JSOI2011]柠檬
传送门 显然考虑 $dp$ ,发现从右往左和从左往右是一样的,所以只考虑一边就行 发现对于切的左右端点,选择的 $s0$ 一定要为左右端点的贝壳大小,不然这个端点不产生贡献还不如分开来单个贡献 所以设 ...
- bzoj4709: [Jsoi2011]柠檬 斜率优化
题目链接 bzoj4709: [Jsoi2011]柠檬 题解 斜率优化 设 \(f[i]\) 表示前 \(i\)个数分成若干段的最大总价值. 对于分成的每一段,左端点的数.右端点的数.选择的数一定是相 ...
- 4709: [Jsoi2011]柠檬
4709: [Jsoi2011]柠檬 https://www.lydsy.com/JudgeOnline/problem.php?id=4709 分析: 决策单调性+栈+二分. 首先挖掘性质:每个段选 ...
- 【BZOJ】4709: [Jsoi2011]柠檬
4709: [Jsoi2011]柠檬 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 779 Solved: 310[Submit][Status][ ...
- 【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈
[BZOJ4709][Jsoi2011]柠檬 Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,0 ...
- 【LG5504】[JSOI2011]柠檬
[LG5504][JSOI2011]柠檬 题面 洛谷 题解 考虑\(dp\),令\(f_i\)表示\(dp\)到第\(i\)位且在第\(i\)位分段的最大值. 我们令题面中的\(s_i\)为\(a_i ...
- 笔记-[JSOI2011]柠檬
笔记-[JSOI2011]柠檬 [JSOI2011]柠檬 \(f_i\) 表示到第 \(i\) 只贝壳最多可以换得的柠檬数. 令 \(c_i=\sum_{h=1}^i[s_h=s_i]\). \[\b ...
- bzoj4709 [jsoi2011]柠檬
Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们 ...
- 【bzoj4709】[Jsoi2011]柠檬 斜率优化
题目描述 给你一个长度为 $n$ 的序列,将其分成若干段,每段选择一个数,获得 $这个数\times 它在这段出现次数的平方$ 的价值.求最大总价值. $n\le 10^5$ . 输入 第 1 行:一 ...
随机推荐
- php项目权限系统设计
原文地址:https://blog.csdn.net/u013090676/article/details/77893237 说起php的权限,很多人都容易想起rbac,这里不多介绍.下面介绍一种通用 ...
- SQL optimizer -Query Optimizer Deep Dive
refer: http://sqlblog.com/blogs/paul_white/archive/2012/04/28/query-optimizer-deep-dive-part-1.aspx ...
- php改变header头返回值
$code = '400 Bad Request'; header('HTTP/1.1 '.$code);
- nodejs本版问题
接到一个新项目,前端用的是VUE,这就需要安装nodejs.记得之前安装的是V6.X,在npm install加载依赖库node_modules的时候ant-design-vue总是报错.看到同事用n ...
- Helm chart仓库官方仓库不能使用解决方法
Helm chart仓库官方仓库不能使用解决方法 k8s中的官方helm chart仓库在国内可能使用不了,但是我们又需要使用,这里推荐几个方法. 使用其他的chart仓库 微软的chart仓库 ht ...
- Java 谷歌浏览器开发必备插件
1.谷歌访问助手 下载网址:http://www.ggfwzs.com/ 2.Json Viewer 格式化请求接口,返回Json数据格式,可以在浏览器展示 3.Restlet client 一种类似 ...
- 安卓之Android.mk编写
题记:编译环境可以参考https://www.cnblogs.com/ywjfx/p/9960817.html 不管是写C还是java,我想所有的程序员都经历过HelloWorld程序的编写,现在让我 ...
- php中应用memcached
PHP连接Memcached 先安装php的memcache扩展 # wget http://ip/data/attachment/forum/memcache-2.2.3.tgz# tar zxf ...
- Web jsp开发学习——数据库的另一种连接方式(配置静态数据库连接池)
1.导包 2.找到sever里的sever.xml,配置静态数据库连接池 <Context docBase="bookstore" path="/booksto ...
- Introduction to pointers in C
The basic purpose of developing a C programming tutorial for this website – CircuitsToday – is to ma ...