题目传送门:https://loj.ac/problem/6220

  题意:对于一个序列$a$,找出它的一个子序列$b$,使$\sum_{a_i \in b}a_i \equiv 0 \pmod n$

  这是一道很好的思维题。

  全体子序列较难考虑,因此我们考虑子序列中的区间。设$sum_i=\sum_{i=1}^{n} a_i$,显然$\sum_{i=l}^{r} a_i \equiv 0 \pmod n$当且仅当$sum_{l-1}=sum_r$,而我们发现$sum_i \bmod n$只有$n$种取值,那么根据抽屉原理,必定存在$x,y \in [0,n],x \neq y$,使$sum_x=sum_y$,因此区间$[x+1,y]$就是我们的答案。

  代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#define ll long long
#define maxn 1000020
inline ll read()
{
ll x=; char c=getchar(),f=;
for(;c<''||''<c;c=getchar())if(c=='-')f=-;
for(;''<=c&&c<='';c=getchar())x=x*+c-'';
return x*f;
}
inline void write(ll x)
{
static int buf[],len; len=;
if(x<)x=-x,putchar('-');
for(;x;x/=)buf[len++]=x%;
if(!len)putchar('');
else while(len)putchar(buf[--len]+'');
}
inline void writeln(ll x){write(x); putchar('\n');}
inline void writesp(ll x){write(x); putchar(' ');}
ll a[maxn];
int pos[maxn];
int n;
int main()
{
n=read();
pos[]=;
int sum=;
for(int i=;i<=n;i++){
a[i]=read();
sum=(sum+a[i])%n;
if(pos[sum]){
for(int j=pos[sum];j<=i;j++)
writesp(j),writeln(a[j]);
return ;
}
else pos[sum]=i+;
}
return ;
}

loj6220

【loj#6220】sum的更多相关文章

  1. 【LOJ#6072】苹果树(矩阵树定理,折半搜索,容斥)

    [LOJ#6072]苹果树(矩阵树定理,折半搜索,容斥) 题面 LOJ 题解 emmmm,这题似乎猫讲过一次... 显然先\(meet-in-the-middle\)搜索一下对于每个有用的苹果数量,满 ...

  2. 【LOJ#6073】距离(主席树)

    [LOJ#6073]距离(主席树) 题面 LOJ 题解 两点间的距离是\(dep[x]+dep[y]-2dep[LCA]\). 那么题目要求的东西拆开维护,唯一不好做的就是\(2dep[LCA]\). ...

  3. 【LOJ#6041】事情的相似度(后缀自动机)

    [LOJ#6041]事情的相似度(后缀自动机) 题面 LOJ 题解 \(\mbox{YCB}\)搬了这道题目...\(\mbox{QwQ}\) 还是用到\(lcp\)就是\(parent\)树上的\( ...

  4. 【LOJ#3144】[APIO2019]奇怪装置(数论)

    [LOJ#3144][APIO2019]奇怪装置(数论) 题面 LOJ 题解 突然发现\(LOJ\)上有\(APIO\)的题啦,赶快来做一做. 这题是窝考场上切了的题嗷.写完暴力之后再推了推就推出正解 ...

  5. 【LOJ#3097】[SNOI2019]通信(费用流)

    [LOJ#3097][SNOI2019]通信(费用流) 题面 LOJ 题解 暴力就直接连\(O(n^2)\)条边. 然后分治/主席树优化连边就行了. 抄zsy代码,zsy代码是真的短 #include ...

  6. 【LOJ#3096】[SNOI2019]数论

    [LOJ#3096][SNOI2019]数论 题面 LOJ 题解 考虑枚举一个\(A\),然后考虑有多少个合法的\(B\). 首先这个数可以写成\(a_i+kP\)的形式,那么它模\(Q\)的值成环. ...

  7. 【LOJ#3095】[SNOI2019]字符串(后缀数组)

    [LOJ#3095][SNOI2019]字符串(后缀数组) 题面 LOJ 题解 首先画图看看如何比较两个串的大小,发现这个东西等价于求两个相邻的后缀的\(LCP\). 一个做法是求出\(SA\),然后 ...

  8. 【LOJ#2402】[THUPC2017]天天爱射击(整体二分)

    [LOJ#2402][THUPC2017]天天爱射击(整体二分) 题面 LOJ 题解 显然对于每块木板可以二分被打烂的时间. 那么直接上整体二分处理就行了. #include<iostream& ...

  9. 【LOJ#2542】[PKUWC2018]随机游走(min-max容斥,动态规划)

    [LOJ#2542][PKUWC2018]随机游走(min-max容斥,动态规划) 题面 LOJ 题解 很明显,要求的东西可以很容易的进行\(min-max\)容斥,那么转为求集合的\(min\). ...

随机推荐

  1. 剑指offer 65. 不用加减乘除做加法(Leetcode 371. Sum of Two Integers)

    剑指offer 65. 不用加减乘除做加法(Leetcode 371. Sum of Two Integers) https://leetcode.com/problems/sum-of-two-in ...

  2. 阅读随笔 Spring、Mybatis

    一.<Spring+Mybatis 企业应用实战>(第2版本) 本书讲解了Spring.Mybatis及Spring+MyBatis 工作中的常用方法,没有太深入的原理性讲解,介绍 “如何 ...

  3. 从Odds:比值比推导出Logtic分类的算法

    在从概率模型推导出逻辑回归算法模型的博文中,我试着从李宏毅老师的课程中讲到的概率模型去推导逻辑分类的算法模型.有幸看到另外一篇博文01 分类算法 - Logistic回归 - Logit函数,我了解到 ...

  4. shell脚本执行出现“期待整数表达式”

    在执行shell时一直出现“integer expression expected”,找了很久也没发现那个地方出错.翻了笔记发现-le并不错啊,甚至还怀疑零是不是整数还特意上网搜了下 -_- . 最后 ...

  5. d3学习之路

    d3学习历程: 轻量化编译器:HbuiderXHbuiderX使用教程   理解HTMl js CSS 三者关系   学习html js css :1)w3school           2)moo ...

  6. TOMCAT 安装教程 & 配置CGI & c语言exe

    TOMCAT安装 参考原文网址:百度经验http://jingyan.baidu.com/article/154b4631aad2bb28ca8f4191.html 1.下载安装JDK 网址:http ...

  7. VS.vs15

    1.20190615 安装的 vs2015(cn_visual_studio_enterprise_2015_with_update_3_x86_x64_dvd_8923298.iso) 的目录为: ...

  8. VS2013:error C1069: 无法读取编译器命令行

    前一阵搞python和matlab,没用VS 2013,今天打开一个C++程序想跑一跑,突然蹦出这么个错误,然后发现电脑上所有的程序都会这样了. 后来发现是TMP/TEMP环境变量路径有空格的问题,更 ...

  9. 1.3.4 Fork/Join框架

    package com.study.forkjoin; import java.util.ArrayList; import java.util.List; import java.util.conc ...

  10. Kubernetes---Pod笔记

    ⒈pod的理解     将多个容器镜像融合在一起,共享网络命名空间及容器卷 ⒉pod的分类 自助式podv          不是被控制器管理的pod,它一旦死亡不会被人给拉起来. 控制器管理的pod ...