LeetCode347——优先队列解决查询前k高频率数字问题
给定一个非空的整数数组,返回其中出现频率前 k 高的元素。
例如,
给定数组 [1,1,1,2,2,3]
, 和 k = 2,返回 [1,2]
。
注意:
- 你可以假设给定的 k 总是合理的,1 ≤ k ≤ 数组中不相同的元素的个数。
- 你的算法的时间复杂度必须优于 O(n log n) , n 是数组的大小。
这里已经明确的要求了时间复杂度,那么对于这种前k个元素问题,可以采用小根堆结构来解决,因为把元素变为了树状结构,所以在时间复杂度方面绝对是优于扫描数组的,定义一个优先队列(jdk提供的优先队列是由小根堆实现的,这里正好符合要求),队列允许存储元素k个。
代码如下:
class Solution {
private class Freq implements Comparable<Freq> {
public int data, freq; public Freq(int data, int freq) {
this.data = data;
this.freq = freq;
} @Override
public int compareTo(Freq o) {
if (this.freq > o.freq) {
// 当前key的频率大于父节点的频率的话,不上浮
return 1;
} else if (this.freq < o.freq) {
return -1;
} else {
return 0;
}
} } public List<Integer> topKFrequent(int[] nums, int k) {
TreeMap<Integer, Integer> map = new TreeMap<>();
// O(n)
for (int num : nums) {
if (map.containsKey(num)) {
map.put(num, map.get(num) + 1);
} else {
map.put(num, 1);
}
}
PriorityQueue<Freq> queue = new PriorityQueue<>(); for (int key : map.keySet()) {
if (queue.size() < k) {
queue.add(new Freq(key, map.get(key)));
} else if (map.get(key) > queue.peek().freq) {
// 大于优先队列的最小值
// 删掉最小值,并把当前的key加入优先队列
queue.remove();
queue.add(new Freq(key, map.get(key)));
}
}
List<Integer> list = new ArrayList<>();
while (queue.size() > 0) {
Freq freq = queue.remove();
list.add(freq.data);
}
return list;
}
}
LeetCode347——优先队列解决查询前k高频率数字问题的更多相关文章
- LeetCode347:返回频率前K高的元素,基于优先队列实现
package com.lt.datastructure.MaxHeap; import java.util.LinkedList; import java.util.List; import jav ...
- [Swift]LeetCode347. 前K个高频元素 | Top K Frequent Elements
Given a non-empty array of integers, return the k most frequent elements. Example 1: Input: nums = [ ...
- 【LeetCode题解】347_前K个高频元素(Top-K-Frequent-Elements)
目录 描述 解法一:排序算法(不满足时间复杂度要求) Java 实现 Python 实现 复杂度分析 解法二:最小堆 思路 Java 实现 Python 实现 复杂度分析 解法三:桶排序(bucket ...
- LeetCode:前K个高频元素【347】
LeetCode:前K个高频元素[347] 题目描述 给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2,2,3], k = 2 输出: [ ...
- 力扣347——前 K 个高频元素
这道题主要涉及的是对数据结构里哈希表.小顶堆的理解,优化时可以参考一些排序方法. 原题 给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2, ...
- 力扣 - 347. 前 K 个高频元素
目录 题目 思路1(哈希表与排序) 代码 复杂度分析 思路2(建堆) 代码 复杂度分析 题目 347. 前 K 个高频元素 思路1(哈希表与排序) 先用哈希表记录所有的值出现的次数 然后将按照出现的次 ...
- 前K个高频元素
给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2,2,3], k = 2 输出: [1,2] 示例 2: 输入: nums = [1], ...
- Leetcode 347.前K个高频元素 By Python
给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2,2,3], k = 2 输出: [1,2] 示例 2: 输入: nums = [1], ...
- 代码题(3)— 最小的k个数、数组中的第K个最大元素、前K个高频元素
1.题目:输入n个整数,找出其中最小的K个数. 例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4. 快排思路(掌握): class Solution { public ...
随机推荐
- java之JVM学习--简单理解编译和运行的过程之概览
java代码编译流程图: java字节码执行由JVM执行引擎完成 Java代码编译和执行的整个过程包含了以下三个重要的机制: Java源码编译机制 类加载机制 类执行机制 Java源码编译机制 Jav ...
- 深入SpringBoot注解原理及使用
首先,先看SpringBoot的主配置类: @SpringBootApplication public class StartEurekaApplication { public static voi ...
- 修改jumpserver源码并且实现一个自定义功能模块
在前面已经说了,如何打开jumpserver的管理控制台并且自定义自己的数据模型.接下来实现一个自定义的功能模块. 先看效果! 一 定义好自己的模型(model) 1.1 这一块儿在前一篇博文已经讲过 ...
- 学习手写vue,理解原理
class Compiler{ constructor(el,vm){ // 判断el属性 是不是 一个元素, 如果不是就获取 this.el = this.isElementNode(el)?el: ...
- Python学习记录2-函数与字符串
函数 函数是代码的一种组织形式 函数应该能完成一项特定的工作,而且一般一个函数只完成一项工作 有些语言,分函数和过程两个概念,通俗解释是,有返回结果的叫函数,无返回结果的叫过程,python不加以区分 ...
- vue 之img的src是动态渲染时(即 :src=' ' )不显示 踩坑
问题: <img :src="item.image ? `../../assets/image/${item.image}` : ''" alt="image&qu ...
- Prometheus(1) 概念
Prometheus Prometheus是一套开源的监控&报警&时间序列数据库的组合.对我来说,它跟 zabbix 最大的区别就是它没有模板,所有的告警规则都得自己写... 它有一套 ...
- Django上手体验,对比Asp.Net Core框架
一.前言 最近经常听说“人生苦短,我选python”这句话,处于好奇,笔者对python相关技术和web框架做了一番研究,本篇就对python web框架代表作Django和微软主打web框架Asp. ...
- mybatis详解(三)
一,动态sql,where,trim,set和foreach parameterType的属性可以不用写 xml文件sql的书写 <select id="queryByParams&q ...
- python+Appium自动化:H5元素定位
问题思考 在混合开发的App中,经常会有内嵌的H5页面.那么这些H5页面元素该如何进行定位操作呢? 解决思路 针对这种场景直接使用前面所讲的方法来进行定位是行不通的,因为前面的都是基于Andriod原 ...