LeetCode347——优先队列解决查询前k高频率数字问题
给定一个非空的整数数组,返回其中出现频率前 k 高的元素。
例如,
给定数组 [1,1,1,2,2,3]
, 和 k = 2,返回 [1,2]
。
注意:
- 你可以假设给定的 k 总是合理的,1 ≤ k ≤ 数组中不相同的元素的个数。
- 你的算法的时间复杂度必须优于 O(n log n) , n 是数组的大小。
这里已经明确的要求了时间复杂度,那么对于这种前k个元素问题,可以采用小根堆结构来解决,因为把元素变为了树状结构,所以在时间复杂度方面绝对是优于扫描数组的,定义一个优先队列(jdk提供的优先队列是由小根堆实现的,这里正好符合要求),队列允许存储元素k个。
代码如下:
class Solution {
private class Freq implements Comparable<Freq> {
public int data, freq; public Freq(int data, int freq) {
this.data = data;
this.freq = freq;
} @Override
public int compareTo(Freq o) {
if (this.freq > o.freq) {
// 当前key的频率大于父节点的频率的话,不上浮
return 1;
} else if (this.freq < o.freq) {
return -1;
} else {
return 0;
}
} } public List<Integer> topKFrequent(int[] nums, int k) {
TreeMap<Integer, Integer> map = new TreeMap<>();
// O(n)
for (int num : nums) {
if (map.containsKey(num)) {
map.put(num, map.get(num) + 1);
} else {
map.put(num, 1);
}
}
PriorityQueue<Freq> queue = new PriorityQueue<>(); for (int key : map.keySet()) {
if (queue.size() < k) {
queue.add(new Freq(key, map.get(key)));
} else if (map.get(key) > queue.peek().freq) {
// 大于优先队列的最小值
// 删掉最小值,并把当前的key加入优先队列
queue.remove();
queue.add(new Freq(key, map.get(key)));
}
}
List<Integer> list = new ArrayList<>();
while (queue.size() > 0) {
Freq freq = queue.remove();
list.add(freq.data);
}
return list;
}
}
LeetCode347——优先队列解决查询前k高频率数字问题的更多相关文章
- LeetCode347:返回频率前K高的元素,基于优先队列实现
package com.lt.datastructure.MaxHeap; import java.util.LinkedList; import java.util.List; import jav ...
- [Swift]LeetCode347. 前K个高频元素 | Top K Frequent Elements
Given a non-empty array of integers, return the k most frequent elements. Example 1: Input: nums = [ ...
- 【LeetCode题解】347_前K个高频元素(Top-K-Frequent-Elements)
目录 描述 解法一:排序算法(不满足时间复杂度要求) Java 实现 Python 实现 复杂度分析 解法二:最小堆 思路 Java 实现 Python 实现 复杂度分析 解法三:桶排序(bucket ...
- LeetCode:前K个高频元素【347】
LeetCode:前K个高频元素[347] 题目描述 给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2,2,3], k = 2 输出: [ ...
- 力扣347——前 K 个高频元素
这道题主要涉及的是对数据结构里哈希表.小顶堆的理解,优化时可以参考一些排序方法. 原题 给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2, ...
- 力扣 - 347. 前 K 个高频元素
目录 题目 思路1(哈希表与排序) 代码 复杂度分析 思路2(建堆) 代码 复杂度分析 题目 347. 前 K 个高频元素 思路1(哈希表与排序) 先用哈希表记录所有的值出现的次数 然后将按照出现的次 ...
- 前K个高频元素
给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2,2,3], k = 2 输出: [1,2] 示例 2: 输入: nums = [1], ...
- Leetcode 347.前K个高频元素 By Python
给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2,2,3], k = 2 输出: [1,2] 示例 2: 输入: nums = [1], ...
- 代码题(3)— 最小的k个数、数组中的第K个最大元素、前K个高频元素
1.题目:输入n个整数,找出其中最小的K个数. 例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4. 快排思路(掌握): class Solution { public ...
随机推荐
- vue阻止右键默认行为
vue阻止右键默认行为 <!--不阻止右键菜单(浏览器行为),右键执行函数show--> <input type="button" value="按钮& ...
- 【原创】编程基础之Jekins
Jenkins 2.164.2 官方:https://jenkins.io 一 简介 Build great things at any scale The leading open source a ...
- gdb-example-ncurses
gdb-example-ncurses http://www.brendangregg.com/blog/2016-08-09/gdb-example-ncurses.html 1. The Prob ...
- TypeScript入门四:TypeScript的类(class)
TypeScript类的基本使用(修饰符) TypeScript类的抽象类(abstract) TypeScript类的高级技巧 一.TypeScript类的基本使用(修饰符) TypeScript的 ...
- Servlet和JSP学习总结
目录 Jsp会被编译成servlet,在页面被第一次访问的时候 Jsp中可以在html页面中嵌入java代码或者引入jsp标签 可以在html中引入自定义标签 Web工程的目录结构 Jsp的注释 Js ...
- 01_Hive简介及其工作机制
1.Hive简介 Hive是一个基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一个表.并提供类SQL查询功能, 可以将sql语句转换为MapReduce任务运行.其优点是学习成本低, ...
- python 中 open与with open 的区别
读写文件是最常见的IO操作.Python内置了读写文件的函数,用法和C是兼容的. 读写文件前,我们先必须了解一下,在磁盘上读写文件的功能都是由操作系统提供的,现代操作系统不允许普通的程序直接操作磁盘, ...
- Git远程分支和refs文件具体解释
推送远程分支到同一个server 比方首先建立gitserver,顺便clone出两个副本 mkdir server cd server git init --bare cd .. git clone ...
- python_tkinter组件
1.按钮 # 按钮 # bg设置背景色 btn = tkinter.Button(root,text = '按钮',bg = 'red') btn.pack() # fg设置前景色(文字颜色) btn ...
- RAID 5 是一种存储性能、数据安全和存储成本兼顾的存储解决方案
可用容量:(n-1)/n的总磁盘容量(n为磁盘数) 原因:RAID5把数据和相对应的奇偶校验信息存储到组成RAID5的各个磁盘上,并且奇偶校验信息和相对应的数据分别存储于不同的磁盘上,其中任意N-1块 ...