Leetcode之动态规划(DP)专题-62. 不同路径(Unique Paths)
Leetcode之动态规划(DP)专题-62. 不同路径(Unique Paths)
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
例如,上图是一个7 x 3 的网格。有多少可能的路径?
说明:m 和 n 的值均不超过 100。
示例 1:
输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右
示例 2:
输入: m = 7, n = 3
输出: 28
状态转移方程:dp[i][j] = dp[i-1][j] + dp[i][j-1];
dp[i][j]定义为:从0,0这个点走到i,j这个点的路径数,那么路径数 = 从格子上面走过来的数+从格子左边走过来的数 AC代码:
class Solution {
public int uniquePaths(int m, int n) {
int dp[][] = new int[m][n];
for(int i=0;i<m;i++) dp[i][0] = 1;
for(int i=0;i<n;i++) dp[0][i] = 1;
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
dp[i][j] = dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}
Leetcode之动态规划(DP)专题-62. 不同路径(Unique Paths)的更多相关文章
- [Swift]LeetCode62. 不同路径 | Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- 动态规划dp专题练习
貌似开坑还挺好玩的...开一个来玩玩=v=... 正好自己dp不是很熟悉,就开个坑来练练吧...先练个50题?小目标... 好像有点多啊QAQ 既然是开坑,之前写的都不要了! 50/50 1.洛谷P3 ...
- Leetcode之动态规划(DP)专题-63. 不同路径 II(Unique Paths II)
Leetcode之动态规划(DP)专题-63. 不同路径 II(Unique Paths II) 初级题目:Leetcode之动态规划(DP)专题-62. 不同路径(Unique Paths) 一个机 ...
- 【一天一道LeetCode】#63. Unique Paths II
一天一道LeetCode (一)题目 Follow up for "Unique Paths": Now consider if some obstacles are added ...
- Leetcode之动态规划(DP)专题-931. 下降路径最小和(Minimum Falling Path Sum)
Leetcode之动态规划(DP)专题-931. 下降路径最小和(Minimum Falling Path Sum) 给定一个方形整数数组 A,我们想要得到通过 A 的下降路径的最小和. 下降路径可以 ...
- Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)
Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...
- Leetcode之动态规划(DP)专题-188. 买卖股票的最佳时机 IV(Best Time to Buy and Sell Stock IV)
Leetcode之动态规划(DP)专题-188. 买卖股票的最佳时机 IV(Best Time to Buy and Sell Stock IV) 股票问题: 121. 买卖股票的最佳时机 122. ...
- Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)
Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...
- Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings)
Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings) 给定一个字符串,你的任务是计算这个字符串中有多少个回文子串. 具有不同开始位置或结束位置的子 ...
随机推荐
- JQUERY动态绘制表格,实现动态添加一行,删除一行
HTML部分 <table style="width: 100%;" id="TABYESTERDAY11"></table> < ...
- 题解 【NOI2015】软件包管理器
题面 解析 事实上,这应该是道树剖裸题了, 将已安装表示为\(1\), 那么只需要在线段树中记录一下区间中\(1\)的个数就行了. 在询问的时候, 如果是安装,就查询\(x\)到根节点, 卸载的话,就 ...
- 【C#-批量插入数据到数据库】DataTable数据批量插入数据的库三种方法:SqlCommand.EcecuteNonQurery(),SqlDataAdapter.Update(DataTable) ,SqlBulkCopy.WriteToServer(Datatable)
第一种方法:使用SqlCommand.EcecuteNonQurery() 效率最慢 第二种方法:使用SqlDataAdapter.Update(DataTable) 效率次之 第三种方法:使用 ...
- CDOJ 1135 邱老师看电影 概率dp
邱老师看电影 Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Submit St ...
- poj 2431 Expedition 贪心+优先队列 很好很好的一道题!!!
Expedition Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10025 Accepted: 2918 Descr ...
- CUDA-F-1-0-并行计算与计算机架构
Abstract: 本文从总体上给出了CUDA编程的Big picture,后续所有的文章都在本文的基础上详细展开. Keywords: 并行计算,串行编程,并行编程,计算机架构,并行性,异构架构,C ...
- Comet OJ - Contest #3 D 可爱的菜菜子 线段树+线性基
题意 给你一个长度为 \(n\) 的整数序列 \(a_1, a_2, \ldots, a_n\),你需要实现以下两种操作,每个操作都可以用四个整数 \(opt\ l\ r\ v\) 来表示: \(op ...
- cmd中实现代码雨的命令。。。
颜色修改时不能使用十六进制数 @echo off title digitalrain color 0b setlocal ENABLEDELAYEDEXPANSION for /l %%i in (0 ...
- [CSP-S模拟测试]:射手座之日(dsu on tree)
题目传送门(内部题103) 输入格式 第一行一个数$n$,表示结点的个数. 第二行$n–1$个数,第$i$个数是$p[i+1]$.$p[i]$表示结点$i$的父亲是$p[i]$.数据保证$p[i]&l ...
- MySQL 主从复制 (CentOS 7)
1.主从复制原理 (1) 当master 服务器上的数据发生改变时,则将其改变写入二进制日志文件中: (2) slave服务器会在一定时间间隔内对 master 服务器上的二进制日志进行探测,探测其是 ...