关于博主skywang123456文章——二叉堆(三)之 Java的实现的质疑
博客园博主skywang123456(以下简称s博主)是一个大牛级的人物,相信很多程序员都拜读过他的博客,我也不例外,并且受益匪浅。但是对于文章二叉堆(三)之 Java的实现我有一些疑惑,写在这里,供有缘人参考。对于而二叉堆的插入,是一个较为简单的方法,这里没有什么问题。但是而二叉堆的删除确是一个稍微复杂一点的操作,事实上,我第一次看这篇博文的时候就感觉有些恍惚不清。一般来说,而二叉堆的删除分为删除堆顶和查找型删除。堆顶删除可以由查找型删除实现,故名思意,直接删除堆顶的数据即可,在二叉堆的实际应用中被广泛使用。而查找型删除首先要查到给定参数的位置,然后删除该元素。而我要指出的问题是博主s使用删除堆顶的代码来代替了查找型删除的代码,而这两个我会举例来说明是不同的。
先来看博主s的删除代码
public int remove(T data) {
// 如果"堆"已空,则返回-1
if(mHeap.isEmpty() == true)
return -1; // 获取data在数组中的索引
int index = mHeap.indexOf(data);
if (index==-1)
return -1; int size = mHeap.size();
mHeap.set(index, mHeap.get(size-1));// 用最后元素填补
mHeap.remove(size - 1); // 删除最后的元素 if (mHeap.size() > 1)
filterdown(index, mHeap.size()-1); // 从index号位置开始自上向下调整为最小堆 return 0;
}
protected void filterdown(int start, int end) {
int c = start; // 当前(current)节点的位置
int l = 2*c + 1; // 左(left)孩子的位置
T tmp = mHeap.get(c); // 当前(current)节点的大小 while(l <= end) {
int cmp = mHeap.get(l).compareTo(mHeap.get(l+1));
// "l"是左孩子,"l+1"是右孩子
if(l < end && cmp<0)
l++; // 左右两孩子中选择较大者,即mHeap[l+1]
cmp = tmp.compareTo(mHeap.get(l));
if(cmp >= 0)
break; //调整结束
else {
mHeap.set(c, mHeap.get(l));
c = l;
l = 2*l + 1;
}
}
mHeap.set(c, tmp);
}
不难理解,将查找到的节点使用堆尾数据填充,之后删除堆尾数据,接着从该节点自上往下调整为最小堆。(目测笔误,应该是最大堆)这是典型的删除堆顶的代码。
博主s在文中给了两个删除的例子。第一个是删除堆顶的元素,因为没有根节点,所以当然适合这个代码。
而第二个例子不是删除根节点的数据,但是为什么也可以?这是一个巧合,恰好是符合某些特定的条件。
如图所示,删除节点60,补充40,40小于其子节点50,然后交换。其实有一种情况,即堆尾数据补充之后会大于原先的父节点,我们来看下图这个堆。
如果我们删除节点2,按照博主s的步骤,将5补充到原有节点2的位置,然后删除原有节点5,这样就变成右图。之后由于没有子节点,因此结束删除操作。可是右边是一个最大堆吗?显然不是!
所以查找型删除应该添加一个步骤,即先判断是否大于父节点(对于最大堆来说),如果大于父节点,则进行向上交换,直到符合最大堆的条件。查找型删除可以参考我这一篇文章二叉堆的介绍和Java实现 。当然我的代码没有过多测试,可能也有没有考虑到的地方,欢迎大家直接勘误。
以上,便是我看完这篇博文的一些质疑和思考,所说的不一定都对。当然,即使博主s真的有失误,也不影响我这么长时间看他博文所获得的进步。
关于博主skywang123456文章——二叉堆(三)之 Java的实现的质疑的更多相关文章
- 二叉堆(三)之 Java的实现
概要 前面分别通过C和C++实现了二叉堆,本章给出二叉堆的Java版本.还是那句话,它们的原理一样,择其一了解即可. 目录1. 二叉堆的介绍2. 二叉堆的图文解析3. 二叉堆的Java实现(完整源码) ...
- 二项堆(三)之 Java的实现
概要 前面分别通过C和C++实现了二项堆,本章给出二项堆的Java版本.还是那句老话,三种实现的原理一样,择其一了解即可. 目录1. 二项树的介绍2. 二项堆的介绍3. 二项堆的基本操作4. 二项堆的 ...
- 二叉堆(一)之 图文解析 和 C语言的实现
概要 本章介绍二叉堆,二叉堆就是通常我们所说的数据结构中"堆"中的一种.和以往一样,本文会先对二叉堆的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本 ...
- 二叉堆(二)之 C++的实现
概要 上一章介绍了堆和二叉堆的基本概念,并通过C语言实现了二叉堆.本章是二叉堆的C++实现. 目录1. 二叉堆的介绍2. 二叉堆的图文解析3. 二叉堆的C++实现(完整源码)4. 二叉堆的C++测试程 ...
- 【nodejs原理&源码杂记(8)】Timer模块与基于二叉堆的定时器
目录 一.概述 二. 数据结构 2.1 链表 2.2 二叉堆 三. 从setTimeout理解Timer模块源码 3.1 timers.js中的定义 3.2 Timeout类定义 3.3 active ...
- 数据结构图文解析之:二叉堆详解及C++模板实现
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
- 在A*寻路中使用二叉堆
接上篇:A*寻路初探 GameDev.net 在A*寻路中使用二叉堆 作者:Patrick Lester(2003年4月11日更新) 译者:Panic 2005年3月28日 译者序 这一篇文章,是&q ...
- poj 3253 初涉二叉堆 模板题
这道题很久以前就做过了 当时是百度学习了优先队列 后来发现其实还有个用sort的办法 就是默认sort排序后 a[i]+=a[i-1] 然后sort(a+i,a+i+n) (大概可以这样...答案忘了 ...
- PHP利用二叉堆实现TopK-算法的方法详解
前言 在以往工作或者面试的时候常会碰到一个问题,如何实现海量TopN,就是在一个非常大的结果集里面快速找到最大的前10或前100个数,同时要保证 内存和速度的效率,我们可能第一个想法就是利用排序,然后 ...
随机推荐
- 深入理解java:5. Java分布式架构
什么是分布式架构 分布式系统(distributed system)是建立在网络之上的软件系统. 内聚性是指每一个数据库分布节点高度自治,有本地的数据库管理系统. 透明性是指每一个数据库分布节点对用户 ...
- 洛谷 题解 P1352 【没有上司的舞会】
树形DP的一道较为基础的模板题 状态 dp[i][0/1]为第i个员工是否来参加的最大值 转移 先找到根节点 先遍历完它的儿子,再来更新答案 dp[i][0]+=max(dp[j][0],dp[j][ ...
- HTML的列表表格表单知识点
无序列表格式 ...
- [bzoj1151][CTSC2007]动物园zoo_状压dp
动物园zoo 题目大意:https://www.lydsy.com/JudgeOnline/problem.php?id=1151 题解: 我们发现每个点只会往右延伸$5$个,这个数非常小. 再加上每 ...
- 什么是Metrics-(通俗易懂)
在应用程序中,通常会记录日志以便事后分析,在很多情况下是产生了问题之后,再去查看日志,是一种事后的静态分析.在很多时候,我们可能需要了解整个系统在当前,或者某一时刻运行的情况,比如一个系统后台服务,我 ...
- Httpwatch教程
启动Httpwatch 从IE的“查看”—“浏览器栏”—“HttpWatch”启动HttpWatch.如下图所示: 以下是HttpWatch程序界面 以下用登录我的邮箱mail.163.com例子来展 ...
- Ajax方式上传文件报错"Uncaught TypeError: Illegal invocation"
今天使用ajax上传文件时,出现了错误.数据传输的方式是通过定义formData完成的,提交的文件对象也设置为dom对象,但是还是不能发送请求.F12看到后台报了个错误:Uncaught TypeEr ...
- 将neo4j的一个节点上的关系移动到另一个节点上
将neo4j中一个节点的全部关系移动到另一个节点上面,采用先建立新关系,之后删除原先的关系的方式 def move_relations(source_node_id,target_node_id,gr ...
- idea npm vue java开发工具安装 环境配置
感谢此链接内容作者,从前往后流程较完整详细,助我成功配置好(不知道在这之前做的一些尝试有没有影响) https://blog.csdn.net/qq_42564846/article/details/ ...
- Proxy 和aop
Proxy 就是代理,意思就是 你不用去做,别人代替你去处理 先来个静态代理 public interface Hello { void say(String name); } 被代理类 public ...