[Tensorflow] 使用 tf.train.Checkpoint() 保存 / 加载 keras subclassed model
在 subclassed_model.py 中,通过对 tf.keras.Model 进行子类化,设计了两个自定义模型。
import tensorflow as tf
tf.enable_eager_execution() # parameters
UNITS = 8 class Encoder(tf.keras.Model):
def __init__(self):
super(Encoder, self).__init__()
self.fc1 = tf.keras.layers.Dense(units=UNITS * 2, activation='relu')
self.fc2 = tf.keras.layers.Dense(units=UNITS, activation='relu') def call(self, inputs):
r = self.fc1(inputs)
return self.fc2(r) class Decoder(tf.keras.Model):
def __init__(self):
super(Decoder, self).__init__()
self.fc = tf.keras.layers.Dense(units=1) def call(self, inputs):
return self.fc(inputs)
在 save_subclassed_model.py 中,创建了 5000 组训练数据集,实例化 Encoder()、Decoder() 模型,优化器采用 tf.train.AdamOptimizer(),以均方误差作为 Loss 函数。训练过程中,每 5 个 epoch 保存一次模型。
from subclassed_model import * import numpy as np
import matplotlib.pyplot as plt
import os import tensorflow as tf
tf.enable_eager_execution() # create training data
X = np.linspace(-1, 1, 5000)
np.random.shuffle(X)
y = X ** 3 + 1 + np.random.normal(0, 0.05, (5000,)) # plot data
plt.scatter(X, y)
plt.show() # training dataset
BATCH_SIZE = 16
BUFFER_SIZE = 128 training_dataset = tf.data.Dataset.from_tensor_slices((X, y)).batch(BATCH_SIZE).shuffle(BUFFER_SIZE) # initialize subclassed models
encoder = Encoder()
decoder = Decoder() optimizer = tf.train.AdamOptimizer() # loss function
def loss_function(real, pred):
return tf.losses.mean_squared_error(labels=real, predictions=pred) # training
EPOCHS = 15 # checkpoint
checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt')
checkpoint = tf.train.Checkpoint(optimizer=optimizer,
encoder=encoder,
decoder=decoder)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir) for epoch in range(EPOCHS):
epoch_loss = 0 for (batch, (x, y)) in enumerate(training_dataset):
x = tf.cast(x, tf.float32)
y = tf.cast(y, tf.float32)
x = tf.expand_dims(x, axis=1) # tf.Tensor([...], shape=(16, 1), dtype=float32)
y = tf.expand_dims(y, axis=1) # tf.Tensor([...], shape=(16, 1), dtype=float32) with tf.GradientTape() as tape:
y_ = encoder(x)
prediction = decoder(y_)
batch_loss = loss_function(real=y, pred=prediction) grads = tape.gradient(batch_loss, encoder.variables + decoder.variables)
optimizer.apply_gradients(zip(grads, encoder.variables + decoder.variables),
global_step=tf.train.get_or_create_global_step()) epoch_loss += batch_loss if (batch + 1) % 100 == 0:
print('Epoch {} Batch {} Loss {:.4f}'.format(epoch + 1,
batch + 1,
batch_loss.numpy())) print('Epoch {} Loss {:.4f}'.format(epoch + 1, epoch_loss / len(X))) if (epoch + 1) % 5 == 0:
checkpoint.save(file_prefix=checkpoint_prefix)
运行 save_subclassed_model.py。
2019-06-27 12:57:14.253635: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2019-06-27 12:57:15.660142: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with properties:
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.6705
pciBusID: 0000:01:00.0
totalMemory: 6.00GiB freeMemory: 4.97GiB
2019-06-27 12:57:15.660397: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0
2019-06-27 12:57:16.488227: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-06-27 12:57:16.488385: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0
2019-06-27 12:57:16.488476: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N
2019-06-27 12:57:16.488772: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4722 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060, pci bus id: 0000:01:00.0, compute capability: 6.1)
Epoch 1 Batch 100 Loss 0.1120
Epoch 1 Batch 200 Loss 0.0179
Epoch 1 Batch 300 Loss 0.0347
Epoch 1 Loss 0.0111
Epoch 2 Batch 100 Loss 0.0144
Epoch 2 Batch 200 Loss 0.0097
Epoch 2 Batch 300 Loss 0.0141
Epoch 2 Loss 0.0012
Epoch 3 Batch 100 Loss 0.0060
Epoch 3 Batch 200 Loss 0.0037
Epoch 3 Batch 300 Loss 0.0054
Epoch 3 Loss 0.0007
Epoch 4 Batch 100 Loss 0.0088
Epoch 4 Batch 200 Loss 0.0038
Epoch 4 Batch 300 Loss 0.0093
Epoch 4 Loss 0.0004
Epoch 5 Batch 100 Loss 0.0039
Epoch 5 Batch 200 Loss 0.0044
Epoch 5 Batch 300 Loss 0.0031
Epoch 5 Loss 0.0003
Epoch 6 Batch 100 Loss 0.0025
Epoch 6 Batch 200 Loss 0.0038
Epoch 6 Batch 300 Loss 0.0027
Epoch 6 Loss 0.0002
Epoch 7 Batch 100 Loss 0.0026
Epoch 7 Batch 200 Loss 0.0032
Epoch 7 Batch 300 Loss 0.0041
Epoch 7 Loss 0.0002
Epoch 8 Batch 100 Loss 0.0022
Epoch 8 Batch 200 Loss 0.0031
Epoch 8 Batch 300 Loss 0.0026
Epoch 8 Loss 0.0002
Epoch 9 Batch 100 Loss 0.0040
Epoch 9 Batch 200 Loss 0.0014
Epoch 9 Batch 300 Loss 0.0040
Epoch 9 Loss 0.0002
Epoch 10 Batch 100 Loss 0.0023
Epoch 10 Batch 200 Loss 0.0030
Epoch 10 Batch 300 Loss 0.0038
Epoch 10 Loss 0.0002
Epoch 11 Batch 100 Loss 0.0028
Epoch 11 Batch 200 Loss 0.0020
Epoch 11 Batch 300 Loss 0.0025
Epoch 11 Loss 0.0002
Epoch 12 Batch 100 Loss 0.0027
Epoch 12 Batch 200 Loss 0.0045
Epoch 12 Batch 300 Loss 0.0021
Epoch 12 Loss 0.0002
Epoch 13 Batch 100 Loss 0.0016
Epoch 13 Batch 200 Loss 0.0033
Epoch 13 Batch 300 Loss 0.0024
Epoch 13 Loss 0.0002
Epoch 14 Batch 100 Loss 0.0034
Epoch 14 Batch 200 Loss 0.0028
Epoch 14 Batch 300 Loss 0.0033
Epoch 14 Loss 0.0002
Epoch 15 Batch 100 Loss 0.0019
Epoch 15 Batch 200 Loss 0.0030
Epoch 15 Batch 300 Loss 0.0037
Epoch 15 Loss 0.0002 Process finished with exit code 0
查看 checkpoint_dir 目录下的文件。
在 load_subclassed_model.py 中,创建了 200 组测试数据,加载了 the latest checkpoint 中保存的模型参数,对模型进行了测试。
from subclassed_model import * import numpy as np
import matplotlib.pyplot as plt import tensorflow as tf
tf.enable_eager_execution() # load model
encoder = Encoder()
decoder = Decoder()
optimizer = tf.train.AdamOptimizer() checkpoint_dir = './training_checkpoints' checkpoint = tf.train.Checkpoint(optimizer=optimizer,
encoder=encoder,
decoder=decoder)
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir)) # build model
BATCH_SIZE = 16 encoder.build(input_shape=tf.TensorShape((BATCH_SIZE, 1)))
decoder.build(input_shape=tf.TensorShape((BATCH_SIZE, UNITS))) encoder.summary()
decoder.summary() # create validation data
X_test = np.linspace(-1, 1, 200) # validation dataset
val_dataset = tf.data.Dataset.from_tensor_slices(X_test).batch(1) # predict and plot
results = []
for (batch, x) in enumerate(val_dataset):
x = tf.cast(x, tf.float32)
x = tf.expand_dims(x, axis=1)
y_ = encoder(x)
prediction = decoder(y_)
# print(prediction.numpy()[0][0])
results.append(prediction.numpy()[0][0]) # plot results
plt.scatter(X_test, results)
plt.show()
运行 load_subclassed_model.py。
2019-06-27 13:27:40.712260: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2019-06-27 13:27:42.105938: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with properties:
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.6705
pciBusID: 0000:01:00.0
totalMemory: 6.00GiB freeMemory: 4.97GiB
2019-06-27 13:27:42.106200: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0
2019-06-27 13:27:42.921364: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-06-27 13:27:42.921510: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0
2019-06-27 13:27:42.921594: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N
2019-06-27 13:27:42.921777: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4722 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060, pci bus id: 0000:01:00.0, compute capability: 6.1)
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) multiple 32
_________________________________________________________________
dense_1 (Dense) multiple 136
=================================================================
Total params: 168
Trainable params: 168
Non-trainable params: 0
_________________________________________________________________
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_2 (Dense) multiple 9
=================================================================
Total params: 9
Trainable params: 9
Non-trainable params: 0
_________________________________________________________________ Process finished with exit code 0
版权声明:本文为博主原创文章,欢迎转载,转载请注明作者及原文出处!
[Tensorflow] 使用 tf.train.Checkpoint() 保存 / 加载 keras subclassed model的更多相关文章
- [Tensorflow] 使用 model.save_weights() 保存 / 加载 Keras Subclassed Model
在 parameters.py 中,定义了各类参数. # training data directory TRAINING_DATA_DIR = './data/' # checkpoint dire ...
- docker 保存 加载(导入 导出镜像
tensorflow 的docker镜像很大,pull一次由于墙经常失败.其实docker 可以将镜像导出再导入. 保存加载(tensorflow)镜像 1) 查看镜像 docker images 如 ...
- 优化tableView加载cell与model的过程
优化tableView加载cell与model的过程 效果图 说明 1. 用多态的特性来优化tableView加载cell与model的过程 2. swift写起来果然要比Objective-C简洁了 ...
- TensorFlow:tf.train.Saver()模型保存与恢复
1.保存 将训练好的模型参数保存起来,以便以后进行验证或测试.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.S ...
- tensorflow的tf.train.Saver()模型保存与恢复
将训练好的模型参数保存起来,以便以后进行验证或测试.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.Saver( ...
- tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数(转)
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...
- tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...
- 【转载】 tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数
原文地址: https://blog.csdn.net/dcrmg/article/details/79776876 ----------------------------------------- ...
- tensorflow之tf.train.exponential_decay()指数衰减法
exponential_decay(learning_rate, global_steps, decay_steps, decay_rate, staircase=False, name=None) ...
随机推荐
- Vue -- element-ui el-table 点击tr项页面跳转,返回后缓存回显点击项
页面跳转反显(点击项,点击table滚动的位置,搜索条件,分页回显) 点击table tr项后,页面跳转到下级页面,返回回显搜索条件.当前页码.并将点击项select选中.滚动条也被记录回显跳转时滚动 ...
- python 函数中,os.linesep是干什么的
os.linesep字符串给出当前平台使用的行终止符.例如,Windows使用'\r\n',Linux使用'\n'而Mac使用'\r'. def write_file(filename, subdom ...
- 老式浏览器支持html5与css3
html5低版本浏览器兼容方式 <!--[if IE]> <script src=”http://apps.bdimg.com/libs/html5shiv/3.7/html5s ...
- 004——转载C#禁止改变窗体大小
原文链接:http://www.cnblogs.com/shaozhuyong/p/5545005.html 1.先把MaximizeBox和MinimumBox设置为false,这时你发现最大最小化 ...
- 重新梳理一下adb操作app(golang版)
主要参考我之前整理的内容https://www.cnblogs.com/pu369/p/10490668.html,梳理简化一下思路,以便于用最简单的代码来应对无聊人士的要求. 需求主要是:打开手机. ...
- KiCad:Cursor Ghosting
造冰箱的大熊猫@cnblogs 2019/8/11 装下KiCad学习下,结果鼠标在界面上划过时,留下一串鼠标残影,原来英文管这个叫“cursor ghosting”. 解决方法:依旧粗暴简单,从官网 ...
- Java进阶知识20 Spring的代理模式
本文知识点(目录): 1.概念 2.代理模式 2.1.静态代理 2.2.动态代理 2.3.Cglib子类代理 1.概念 1.工厂模式 2. 单例模式 代理(Proxy ...
- ECMAScript 5.0 基础语法(下)“稍微重点一点点”
接上篇 七.常用内置对象(复杂数据类型)(重点) (1)数组Array 创建:例 var colors = ['red','blue','green'] #推荐这样,因为简单粗暴 或:v ...
- 数据结构实验之二叉树四:(先序中序)还原二叉树 (SDUT 3343)
#include <bits/stdc++.h> using namespace std; struct node { char data; struct node *lc, *rc; } ...
- shell 显示详细信息
MacdeMacBook-Pro:test macname$ ls -al | more total drwxr-xr-x macname staff : . drwxr-xr-x+ macname ...