不同的λ(0,1,10,100)值对regularization的影响\ 预测新的值和计算模型的精度

%% ============= Part 2: Regularization and Accuracies =============
% Optional Exercise:
% In this part, you will get to try different values of lambda and
% see how regularization affects the decision coundart
%
% Try the following values of lambda (0, 1, 10, 100).
%
% How does the decision boundary change when you vary lambda? How does
% the training set accuracy vary?
%

% Initialize fitting parameters
initial_theta = zeros(size(X, 2), 1);

% Set regularization parameter lambda to 1 (you should vary this)
lambda = 1;    %在这里设置λ=(0,1,10,100)

由下图可见,lambda=1时的效果最好,

λ=0时No regularization(overfitting);

λ=100时会too much regularization(underfitting),

% Set Options
options = optimset('GradObj', 'on', 'MaxIter', 400);   %计算gradient,迭代的次数为400次

% Optimize
[theta, J, exit_flag] = ...
fminunc(@(t)(costFunctionReg(t, X, y, lambda)), initial_theta, options);

% Plot Boundary
plotDecisionBoundary(theta, X, y);  %X已经mapFeature过了
hold on;
title(sprintf('lambda = %g', lambda))    % 会在%e和%f中自动选择一种格式,且无后缀0。

% Labels and Legend
xlabel('Microchip Test 1')
ylabel('Microchip Test 2')

legend('y = 1', 'y = 0', 'Decision boundary')
hold off;

% Compute accuracy on our training set
p = predict(theta, X);

fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);

plotDecisionBoundary.m文件

function plotDecisionBoundary(theta, X, y)
%PLOTDECISIONBOUNDARY Plots the data points X and y into a new figure with
%the decision boundary defined by theta
% PLOTDECISIONBOUNDARY(theta, X,y) plots the data points with + for the
% positive examples and o for the negative examples. X is assumed to be
% a either
% 1) Mx3 matrix, where the first column is an all-ones column for the
% intercept.
% 2) MxN, N>3 matrix, where the first column is all-ones

% Plot Data
plotData(X(:,2:3), y);
hold on

if size(X, 2) <= 3
% Only need 2 points to define a line, so choose two endpoints
   plot_x = [min(X(:,2))-2, max(X(:,2))+2];

% Calculate the decision boundary line
   plot_y = (-1./theta(3)).*(theta(2).*plot_x + theta(1));

% Plot, and adjust axes for better viewing
   plot(plot_x, plot_y)

% Legend, specific for the exercise
   legend('Admitted', 'Not admitted', 'Decision Boundary')
   axis([30, 100, 30, 100])
else      %X已经mapFeature过了(有28个features),调用这部分的程序
% Here is the grid range
   u = linspace(-1, 1.5, 50);
   v = linspace(-1, 1.5, 50);

z = zeros(length(u), length(v));
% Evaluate z = theta*x over the grid
for i = 1:length(u)
    for j = 1:length(v)
       z(i,j) = mapFeature(u(i), v(j))*theta;
    end
end
z = z'; % important to transpose z before calling contour

% Plot z = 0
% Notice you need to specify the range [0, 0]
contour(u, v, z, [0, 0], 'LineWidth', 2)    %画等值线.contour(X,Y,Z,[v v]) to draw contours for the single level v.
end  %if size(X, 2) <= 3  else的end
hold off

end

predict.m文件

function p = predict(theta, X)
%PREDICT Predict whether the label is 0 or 1 using learned logistic
%regression parameters theta
% p = PREDICT(theta, X) computes the predictions for X using a
% threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)

m = size(X, 1); % Number of training examples

% You need to return the following variables correctly
p = zeros(m, 1);

% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned logistic regression parameters.
% You should set p to a vector of 0's and 1's
%
for i=1:m
    if sigmoid(X(i,:) * theta) >=0.5
        p(i) = 1;
    else
        p(i) = 0;
    end
end

% =========================================================================

end

matlab(8) Regularized logistic regression : 不同的λ(0,1,10,100)值对regularization的影响,对应不同的decision boundary\ 预测新的值和计算模型的精度predict.m的更多相关文章

  1. matlab(7) Regularized logistic regression : mapFeature(将feature增多) and costFunctionReg

    Regularized logistic regression : mapFeature(将feature增多) and costFunctionReg ex2_reg.m文件中的部分内容 %% == ...

  2. matlab(6) Regularized logistic regression : plot data(画样本图)

    Regularized logistic regression :  plot data(画样本图) ex2data2.txt 0.051267,0.69956,1-0.092742,0.68494, ...

  3. machine learning(15) --Regularization:Regularized logistic regression

    Regularization:Regularized logistic regression without regularization 当features很多时会出现overfitting现象,图 ...

  4. matlab(5) : 求得θ值后用模型来预测 / 计算模型的精度

    求得θ值后用模型来预测 / 计算模型的精度  ex2.m部分程序 %% ============== Part 4: Predict and Accuracies ==============% Af ...

  5. ResourceWarning: unclosed <socket.socket fd=864, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('10.100.x.x', 37321), raddr=('10.1.x.x', 8500)>解决办法

    将代码封装,并使用unittest调用时,返回如下警告: C:\python3.6\lib\collections\__init__.py:431: ResourceWarning: unclosed ...

  6. Regularized logistic regression

    要解决的问题是,给出了具有2个特征的一堆训练数据集,从该数据的分布可以看出它们并不是非常线性可分的,因此很有必要用更高阶的特征来模拟.例如本程序中个就用到了特征值的6次方来求解. Data To be ...

  7. 编程作业2.2:Regularized Logistic regression

    题目 在本部分的练习中,您将使用正则化的Logistic回归模型来预测一个制造工厂的微芯片是否通过质量保证(QA),在QA过程中,每个芯片都会经过各种测试来保证它可以正常运行.假设你是这个工厂的产品经 ...

  8. 吴恩达机器学习笔记22-正则化逻辑回归模型(Regularized Logistic Regression)

    针对逻辑回归问题,我们在之前的课程已经学习过两种优化算法:我们首先学习了使用梯度下降法来优化代价函数

  9. Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression

    原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性 ...

随机推荐

  1. mysql You can't specify target table for update in FROM clause解决方法

    mysql You can't specify target table for update in FROM clause解决方法出现这个错误的原因是不能在同一个sql语句中,先select同一个表 ...

  2. 小程序里实现 watch 和 computed

    小程序里的自定义组件里是有数据监听器的,可以监听对应数据的变化来执行callBack,但是页面Page里没有对应的api就显的很生硬,比如某个数据变了(如切换城市)需要重新刷页面,如果不做监听,每次都 ...

  3. why use reverse proxy in asp.net core

    开篇论点 Asp.net Core自带了Kestrel, 为什么我们还要使用诸如IIS.Apache或者Nginx来做反向代理呢? 原因分析 Kestrel用来承载Asp.net Core的动态内容是 ...

  4. LeetCode 581. 最短无序连续子数组(Shortest Unsorted Continuous Subarray)

    581. 最短无序连续子数组 581. Shortest Unsorted Continuous Subarray 题目描述 给定一个整型数组,你需要寻找一个连续的子数组,如果对这个子数组进行升序排序 ...

  5. 数据结构:队列queue 函数push() pop size empty front back

    队列queue: push() pop() size() empty() front() back() push()  队列中由于是先进先出,push即在队尾插入一个元素,如:可以输出:Hello W ...

  6. 使用keepalived实现kubenetes apiserver高可用

    # 安装 nginx yum install nginx -y # 配置nginx4层代理 /etc/nginx/nginx.conf stream { upstream kube-apiserver ...

  7. FPS 游戏实现D3D透视

    FPS游戏可以说一直都比较热门,典型的代表有反恐精英,穿越火线,绝地求生等,基本上只要是FPS游戏都会有透视挂的存在,而透视挂还分为很多种类型,常见的有D3D透视,方框透视,还有一些比较高端的显卡透视 ...

  8. 网页修改<title ></title >标签内容

    document.title = 'xxxxxx';

  9. SQL case when 遇到null值

    case  when f.FPH is  NULL then a.HSJE else f.KPHSJE  end    yes case f.FPH  when   NULL then a.HSJE ...

  10. springboot_2

    1. 配置文件简介 spring boot使用一个全局配置文件:application.properties或者application.yml,放置在src/main/resources目录下或者类路 ...