matlab(8) Regularized logistic regression : 不同的λ(0,1,10,100)值对regularization的影响,对应不同的decision boundary\ 预测新的值和计算模型的精度predict.m
不同的λ(0,1,10,100)值对regularization的影响\ 预测新的值和计算模型的精度
%% ============= Part 2: Regularization and Accuracies =============
% Optional Exercise:
% In this part, you will get to try different values of lambda and
% see how regularization affects the decision coundart
%
% Try the following values of lambda (0, 1, 10, 100).
%
% How does the decision boundary change when you vary lambda? How does
% the training set accuracy vary?
%
% Initialize fitting parameters
initial_theta = zeros(size(X, 2), 1);
% Set regularization parameter lambda to 1 (you should vary this)
lambda = 1; %在这里设置λ=(0,1,10,100)
由下图可见,lambda=1时的效果最好,
λ=0时No regularization(overfitting);
λ=100时会too much regularization(underfitting),
% Set Options
options = optimset('GradObj', 'on', 'MaxIter', 400); %计算gradient,迭代的次数为400次
% Optimize
[theta, J, exit_flag] = ...
fminunc(@(t)(costFunctionReg(t, X, y, lambda)), initial_theta, options);
% Plot Boundary
plotDecisionBoundary(theta, X, y); %X已经mapFeature过了
hold on;
title(sprintf('lambda = %g', lambda)) % 会在%e和%f中自动选择一种格式,且无后缀0。
% Labels and Legend
xlabel('Microchip Test 1')
ylabel('Microchip Test 2')
legend('y = 1', 'y = 0', 'Decision boundary')
hold off;
% Compute accuracy on our training set
p = predict(theta, X);
fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);
plotDecisionBoundary.m文件
function plotDecisionBoundary(theta, X, y)
%PLOTDECISIONBOUNDARY Plots the data points X and y into a new figure with
%the decision boundary defined by theta
% PLOTDECISIONBOUNDARY(theta, X,y) plots the data points with + for the
% positive examples and o for the negative examples. X is assumed to be
% a either
% 1) Mx3 matrix, where the first column is an all-ones column for the
% intercept.
% 2) MxN, N>3 matrix, where the first column is all-ones
% Plot Data
plotData(X(:,2:3), y);
hold on
if size(X, 2) <= 3
% Only need 2 points to define a line, so choose two endpoints
plot_x = [min(X(:,2))-2, max(X(:,2))+2];
% Calculate the decision boundary line
plot_y = (-1./theta(3)).*(theta(2).*plot_x + theta(1));
% Plot, and adjust axes for better viewing
plot(plot_x, plot_y)
% Legend, specific for the exercise
legend('Admitted', 'Not admitted', 'Decision Boundary')
axis([30, 100, 30, 100])
else %X已经mapFeature过了(有28个features),调用这部分的程序
% Here is the grid range
u = linspace(-1, 1.5, 50);
v = linspace(-1, 1.5, 50);
z = zeros(length(u), length(v));
% Evaluate z = theta*x over the grid
for i = 1:length(u)
for j = 1:length(v)
z(i,j) = mapFeature(u(i), v(j))*theta;
end
end
z = z'; % important to transpose z before calling contour
% Plot z = 0
% Notice you need to specify the range [0, 0]
contour(u, v, z, [0, 0], 'LineWidth', 2) %画等值线.contour(X,Y,Z,[v v]) to draw contours for the single level v.
end %if size(X, 2) <= 3 else的end
hold off
end
predict.m文件
function p = predict(theta, X)
%PREDICT Predict whether the label is 0 or 1 using learned logistic
%regression parameters theta
% p = PREDICT(theta, X) computes the predictions for X using a
% threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)
m = size(X, 1); % Number of training examples
% You need to return the following variables correctly
p = zeros(m, 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned logistic regression parameters.
% You should set p to a vector of 0's and 1's
%
for i=1:m
if sigmoid(X(i,:) * theta) >=0.5
p(i) = 1;
else
p(i) = 0;
end
end
% =========================================================================
end
matlab(8) Regularized logistic regression : 不同的λ(0,1,10,100)值对regularization的影响,对应不同的decision boundary\ 预测新的值和计算模型的精度predict.m的更多相关文章
- matlab(7) Regularized logistic regression : mapFeature(将feature增多) and costFunctionReg
Regularized logistic regression : mapFeature(将feature增多) and costFunctionReg ex2_reg.m文件中的部分内容 %% == ...
- matlab(6) Regularized logistic regression : plot data(画样本图)
Regularized logistic regression : plot data(画样本图) ex2data2.txt 0.051267,0.69956,1-0.092742,0.68494, ...
- machine learning(15) --Regularization:Regularized logistic regression
Regularization:Regularized logistic regression without regularization 当features很多时会出现overfitting现象,图 ...
- matlab(5) : 求得θ值后用模型来预测 / 计算模型的精度
求得θ值后用模型来预测 / 计算模型的精度 ex2.m部分程序 %% ============== Part 4: Predict and Accuracies ==============% Af ...
- ResourceWarning: unclosed <socket.socket fd=864, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('10.100.x.x', 37321), raddr=('10.1.x.x', 8500)>解决办法
将代码封装,并使用unittest调用时,返回如下警告: C:\python3.6\lib\collections\__init__.py:431: ResourceWarning: unclosed ...
- Regularized logistic regression
要解决的问题是,给出了具有2个特征的一堆训练数据集,从该数据的分布可以看出它们并不是非常线性可分的,因此很有必要用更高阶的特征来模拟.例如本程序中个就用到了特征值的6次方来求解. Data To be ...
- 编程作业2.2:Regularized Logistic regression
题目 在本部分的练习中,您将使用正则化的Logistic回归模型来预测一个制造工厂的微芯片是否通过质量保证(QA),在QA过程中,每个芯片都会经过各种测试来保证它可以正常运行.假设你是这个工厂的产品经 ...
- 吴恩达机器学习笔记22-正则化逻辑回归模型(Regularized Logistic Regression)
针对逻辑回归问题,我们在之前的课程已经学习过两种优化算法:我们首先学习了使用梯度下降法来优化代价函数
- Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression
原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性 ...
随机推荐
- mysql You can't specify target table for update in FROM clause解决方法
mysql You can't specify target table for update in FROM clause解决方法出现这个错误的原因是不能在同一个sql语句中,先select同一个表 ...
- 小程序里实现 watch 和 computed
小程序里的自定义组件里是有数据监听器的,可以监听对应数据的变化来执行callBack,但是页面Page里没有对应的api就显的很生硬,比如某个数据变了(如切换城市)需要重新刷页面,如果不做监听,每次都 ...
- why use reverse proxy in asp.net core
开篇论点 Asp.net Core自带了Kestrel, 为什么我们还要使用诸如IIS.Apache或者Nginx来做反向代理呢? 原因分析 Kestrel用来承载Asp.net Core的动态内容是 ...
- LeetCode 581. 最短无序连续子数组(Shortest Unsorted Continuous Subarray)
581. 最短无序连续子数组 581. Shortest Unsorted Continuous Subarray 题目描述 给定一个整型数组,你需要寻找一个连续的子数组,如果对这个子数组进行升序排序 ...
- 数据结构:队列queue 函数push() pop size empty front back
队列queue: push() pop() size() empty() front() back() push() 队列中由于是先进先出,push即在队尾插入一个元素,如:可以输出:Hello W ...
- 使用keepalived实现kubenetes apiserver高可用
# 安装 nginx yum install nginx -y # 配置nginx4层代理 /etc/nginx/nginx.conf stream { upstream kube-apiserver ...
- FPS 游戏实现D3D透视
FPS游戏可以说一直都比较热门,典型的代表有反恐精英,穿越火线,绝地求生等,基本上只要是FPS游戏都会有透视挂的存在,而透视挂还分为很多种类型,常见的有D3D透视,方框透视,还有一些比较高端的显卡透视 ...
- 网页修改<title ></title >标签内容
document.title = 'xxxxxx';
- SQL case when 遇到null值
case when f.FPH is NULL then a.HSJE else f.KPHSJE end yes case f.FPH when NULL then a.HSJE ...
- springboot_2
1. 配置文件简介 spring boot使用一个全局配置文件:application.properties或者application.yml,放置在src/main/resources目录下或者类路 ...