1049 Counting Ones (30 分)
 

The task is simple: given any positive integer N, you are supposed to count the total number of 1's in the decimal form of the integers from 1 to N. For example, given N being 12, there are five 1's in 1, 10, 11, and 12.

Input Specification:

Each input file contains one test case which gives the positive N (≤).

Output Specification:

For each test case, print the number of 1's in one line.

Sample Input:

12

Sample Output:

5

题意:

给定一个十进制正整数N,写下从1开始,到N的所有整数,然后数一下其中出现的所有“1”的个数。

题解:

一个最简单的方法来计算f(N),那就是从1开始遍历到N,将其中每一个数中含有“1”的个数加起来,自然就得到了从1到N所有“1”的个数的和。

但是这个算法的致命问题是效率,它的时间复杂度是

ON)×计算一个整数数字里面“1”的个数的复杂度 = ON * log2 N

如果给定的N比较大,则需要很长的运算时间才能得到计算结果。比如在笔者的机器上,如果给定N=100 000 000,则算出fN)大概需要40秒的时间,计算时间会随着N的增大而线性增长。

仔细分析这个问题,给定了N,似乎就可以通过分析“小于N的数在每一位上可能出现1的次数”之和来得到这个结果。让我们来分析一下对于一个特定的N,如何得到一个规律来分析在每一位上所有出现1的可能性,并求和得到最后的fN)。

先从一些简单的情况开始观察,看看能不能总结出什么规律。

先看1位数的情况。

如果= 3,那么从1到3的所有数字:1、2、3,只有个位数字上可能出现1,而且只出现1次,进一步可以发现如果N是个位数,如果N>=1,那么fN)都等于1,如果N=0,则fN)为0。

再看2位数的情况。

如果N=13,那么从1到13的所有数字:1、2、3、4、5、6、7、8、9、10、11、12、13,个位和十位的数字上都可能有1,我们可以将它们分开来考虑,个位出现1的次数有两次:1和11,十位出现1的次数有4次:10、11、12和13,所以fN)=2+4=6。要注意的是11这个数字在十位和个位都出现了1,但是11恰好在个位为1和十位为1中被计算了两次,所以不用特殊处理,是对的。再考虑N=23的情况,它和N=13有点不同,十位出现1的次数为10次,从10到19,个位出现1的次数为1、11和21,所以fN)=3+10=13。通过对两位数进行分析,我们发现,个位数出现1的次数不仅和个位数字有关,还和十位数有关:如果N的个位数大于等于1,则个位出现1的次数为十位数的数字加1;如果N的个位数为0,则个位出现1的次数等于十位数的数字。而十位数上出现1的次数不仅和十位数有关,还和个位数有关:如果十位数字等于1,则十位数上出现1的次数为个位数的数字加1;如果十位数大于1,则十位数上出现1的次数为10。

f(13) = 个位出现1的个数 + 十位出现1的个数 = 2 + 4 = 6;

f(23) = 个位出现1的个数 + 十位出现1的个数 = 3 + 10 = 13;

f(33) = 个位出现1的个数 + 十位出现1的个数 = 4 + 10 = 14;

f(93) = 个位出现1的个数 + 十位出现1的个数 = 10 + 10 = 20;

接着分析3位数。

如果N = 123:

个位出现1的个数为13:1, 11, 21, …, 91, 101, 111, 121

十位出现1的个数为20:10~19, 110~119

百位出现1的个数为24:100~123

f(23)= 个位出现1的个数 + 十位出现1的个数 + 百位出现1的次数 = 13 + 20 + 24 = 57;

同理我们可以再分析4位数、5位数。读者朋友们可以写一写,总结一下各种情况有什么不同。

根据上面的一些尝试,下面我们推导出一般情况下,从N得到fN)的计算方法:

假设N=abcde,这里abcde分别是十进制数N的各个数位上的数字。如果要计算百位上出现1的次数,它将会受到三个因素的影响:百位上的数字,百位以下(低位)的数字,百位(更高位)以上的数字。

如果百位上的数字为0,则可以知道,百位上可能出现1的次数由更高位决定,比如12 013,则可以知道百位出现1的情况可能是100~199,1 100~1 199,2 100~2 199,…,11 100~11 199,一共有1 200个。也就是由更高位数字(12)决定,并且等于更高位数字(12)×当前位数(100)。

如果百位上的数字为1,则可以知道,百位上可能出现1的次数不仅受更高位影响,还受低位影响,也就是由更高位和低位共同决定。例如对于12 113,受更高位影响,百位出现1的情况是100~199,1 100~1 199,2 100~2 199,…,11 100~11 199,一共1 200个,和上面第一种情况一样,等于更高位数字(12)×当前位数(100)。但是它还受低位影响,百位出现1的情况是12 100~12 113,一共114个,等于低位数字(113)+1。

如果百位上数字大于1(即为2~9),则百位上可能出现1的次数也仅由更高位决定,比如12 213,则百位出现1的可能性为:100~199,1 100~1 199,2 100~2 199,…,11 100~11 199,12 100~12 199,一共有1 300个,并且等于更高位数字+1(12+1)×当前位数(100)。

AC代码:

#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
#include<string>
#include<cstring>
using namespace std;
int n;
int num=;
int main(){
cin>>n;
int factor = ;
int higher,lower,cur;//高位,低位,当前位
while(n/factor!=){//依次取个、十、百、千……
higher = n/(factor*);
cur=(n/factor)%;
lower=n%factor;
if(cur==){
num+=higher*factor;
}else if(cur==){
num+=higher*factor+lower+;
}else{
num+=higher*factor+factor;
}
factor = factor * ;
}
cout<<num;
return ;
}

PAT 甲级 1049 Counting Ones (30 分)(找规律,较难,想到了一点但没有深入考虑嫌麻烦)***的更多相关文章

  1. pat 甲级 1049. Counting Ones (30)

    1049. Counting Ones (30) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue The tas ...

  2. PAT甲级1049. Counting Ones

    PAT甲级1049. Counting Ones 题意: 任务很简单:给定任何正整数N,你应该计算从1到N的整数的十进制形式的1的总数.例如,给定N为12,在1,10, 11和12. 思路: < ...

  3. PAT 甲级 1026 Table Tennis (30 分)(坑点很多,逻辑较复杂,做了1天)

    1026 Table Tennis (30 分)   A table tennis club has N tables available to the public. The tables are ...

  4. PAT 甲级 1080 Graduate Admission (30 分) (简单,结构体排序模拟)

    1080 Graduate Admission (30 分)   It is said that in 2011, there are about 100 graduate schools ready ...

  5. PAT 甲级 1072 Gas Station (30 分)(dijstra)

    1072 Gas Station (30 分)   A gas station has to be built at such a location that the minimum distance ...

  6. PAT 甲级 1030 Travel Plan (30 分)(dijstra,较简单,但要注意是从0到n-1)

    1030 Travel Plan (30 分)   A traveler's map gives the distances between cities along the highways, to ...

  7. PAT 甲级 1022 Digital Library (30 分)(字符串读入getline,istringstream,测试点2时间坑点)

    1022 Digital Library (30 分)   A Digital Library contains millions of books, stored according to thei ...

  8. 【PAT甲级】1049 Counting Ones (30 分)(类似数位DP思想的模拟)

    题意: 输入一个正整数N(N<=2^30),输出从1到N共有多少个数字包括1. AAAAAccepted code: #define HAVE_STRUCT_TIMESPEC #include& ...

  9. PAT甲级 1155 Heap Paths (30分) 堆模拟

    题意分析: 给出一个1000以内的整数N,以及N个整数,并且这N个数是按照完全二叉树的层序遍历输出的序列,输出所有的整条的先序遍历的序列(根 右 左),以及判断整棵树是否是符合堆排序的规则(判断是大顶 ...

随机推荐

  1. webpack 配置react脚手架(四):路由配置

    1. 由于 react-router 是集成了 react-router-dom 和 react-router-native的一起的,所以这里要使用的是 react-router-dom, 2. 安装 ...

  2. CSS float详解

    前言:在我们写CSS样式的时候,float,position,display,overflow这几个关键字用得比较多. 弄清楚他们之间的原理,我们可以更高效的写出我们想要的布局. 作者:Ry-yuan ...

  3. 2019牛客暑期多校训练营(第九场)All men are brothers——并查集&&组合数

    题意 最初有 $n$ 个人且互不认识,接下来 $m$ 行,每行有 $x,y$,表示 $x$ 和 $y$ 交朋友,朋友关系满足自反性和传递性,每次输出当前选取4个人且互不认识的方案数. 分析 并查集维护 ...

  4. markdown 显示图片的三种方式

    插入网络图片 插入本地图片 base64 图片(........) ps:base64编码的图片可以通过站长工具编码 https://to ...

  5. 什么是webpack模块化构建工具

    百度百科模块化:是指解决一个复杂问题时自顶向下逐层把系统划分成若干模块的过程,有多种属性,分别反映其内部特性. 计算机模块化:一般指的是可以被抽象封装的最小/最优代码集合,模块化解决的是功能耦合问题. ...

  6. SIGAI机器学习第十五集 支持向量机2

    讲授线性分类器,分类间隔,线性可分的支持向量机原问题与对偶问题,线性不可分的支持向量机原问题与对偶问题,核映射与核函数,多分类问题,libsvm的使用,实际应用 大纲: SVM求解面临的问题 SMO算 ...

  7. HTML 005 段落

    HTML 段落 HTML 可以将文档分割为若干段落. HTML 段落 段落是通过 <p> 标签定义的. 实例 <p>这是一个段落 </p> <p>这是另 ...

  8. 通过自定义属性获取指定checkbox是否选中

    $("input[conferid='"+conferid+"']").is(':checked'); $("input[conferid='1234 ...

  9. decodeURI 与 decodeURIComponent 区别

    1. 关于URL.encodeURI 及 encodeURIComponent: URI: Uniform Resource Identifiers,通用资源标识符 Global 对象的 encode ...

  10. eclipse 点击 new window 后,关闭新增的窗口

    点击右上角的 X 关闭,不要点击 exit 退出