PAT-1030 Travel Plan (30 分) 最短路最小边权 堆优化dijkstra+DFS
PAT 1030 最短路最小边权 堆优化dijkstra+DFS
1030 Travel Plan (30 分)
A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (≤500) is the number of cities (and hence the cities are numbered from 0 to N−1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:
City1 City2 Distance Cost
where the numbers are all integers no more than 500, and are separated by a space.
Output Specification:
For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.
Sample Input:
4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20
Sample Output:
0 2 3 3 40
题目大意:求起点到终点的最短路径最短距离和花费,要求首先路径最短,其次花费最少,要输出完整路径
分析:Dijksta + DFS。 Dijkstra记录路径pre数组,然后用dfs求最短的一条mincost以及它的路径path,最后输出path数组和mincost
注意路径path因为是从末端一直压入push_back到path里面的,所以要输出路径的时候倒着输出
关键是DFS的写法,应该是在一个链状的图数据结构上进行搜索,所以先加一个判断条件,如果到了起点就统计总长度,如果更小,更新anscost并更新path.注意这个时候仍然要pop_back(),没准还有一条更短的路径能够通向起点,之后dfs之后pop_back是常规操作.
void dfs(int v)
{
temppath.push_back(v);
if(v==from)
{
int tempcost=0;
for(int i=temppath.size()-1;i>=1;i--)
{
int id=temppath[i];
int nextid=temppath[i-1];
tempcost+=length[id][nextid];
}
if(tempcost<anscost)
{
path=temppath;
anscost=tempcost;
}
temppath.pop_back();//还得继续迭代呢,没准费用更小
return ;
}
for(int i=0;i<pre[v].size();i++)
{
dfs(pre[v][i]);
}
temppath.pop_back();
}
#include <iostream>
#include<bits/stdc++.h>
#define each(a,b,c) for(int a=b;a<=c;a++)
#define de(x) cout<<#x<<" "<<(x)<<endl
using namespace std;
const int maxn=500+5;
const int inf=0x3f3f3f3f;
int dis[maxn];
bool vis[maxn];
vector<int>pre[maxn];
vector<int>path,temppath;
int length[maxn][maxn];
struct Edge
{
int v;
int len;
int cost;
Edge(int v,int len,int cost):v(v),len(len),cost(cost){}
};
vector<Edge>G[maxn];
struct node
{
int v;
int len;
node(int v=0,int len=0):v(v),len(len){}
bool operator<(const node&r)const
{
return len>r.len;
}
};
void dijkstra(int n,int start)
{
each(i,0,n-1)
{
vis[i]=false;
dis[i]=inf;
}
dis[start]=0;
priority_queue<node>Q;
node temp;
Q.push(node(start,0));
while(!Q.empty())
{
temp=Q.top();
Q.pop();
int u=temp.v;
if(vis[u])continue;
vis[u]=true;
for(int i=0;i<(int)G[u].size();i++)
{
int v=G[u][i].v;
int len=G[u][i].len;
int cost=G[u][i].cost;
if(!vis[v]&&dis[v]>dis[u]+len)
{
dis[v]=dis[u]+len;
pre[v].clear();
pre[v].push_back(u);
Q.push(node(v,dis[v]));
}
else if(!vis[v]&&dis[v]==dis[u]+len)///我佛拉
{
pre[v].push_back(u);
///需不需要push呢????????
}
}
}
}
/*
4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20
*/
int n,m,from,to;
int anscost;
void dfs(int v)
{
temppath.push_back(v);
if(v==from)
{
int tempcost=0;
for(int i=temppath.size()-1;i>=1;i--)
{
int id=temppath[i];
int nextid=temppath[i-1];
tempcost+=length[id][nextid];
}
if(tempcost<anscost)
{
path=temppath;
anscost=tempcost;
}
temppath.pop_back();//还得继续迭代呢,没准费用更小
return ;
}
for(int i=0;i<pre[v].size();i++)
{
dfs(pre[v][i]);
}
temppath.pop_back();
}
int main()
{
anscost=inf;
cin>>n>>m>>from>>to;
while(m--)
{
int a,b,l,cost;
scanf("%d%d%d%d",&a,&b,&l,&cost);
G[a].push_back(Edge(b,l,cost));
G[b].push_back(Edge(a,l,cost));
length[a][b]=length[b][a]=cost;
}
dijkstra(n,from);
dfs(to);
for(int i=path.size()-1;i>=0;i--)
{
printf("%d ",path[i]);
}
printf("%d %d\n",dis[to],anscost);
return 0;
}
PAT-1030 Travel Plan (30 分) 最短路最小边权 堆优化dijkstra+DFS的更多相关文章
- PAT 甲级 1030 Travel Plan (30 分)(dijstra,较简单,但要注意是从0到n-1)
1030 Travel Plan (30 分) A traveler's map gives the distances between cities along the highways, to ...
- 【PAT甲级】1030 Travel Plan (30 分)(SPFA,DFS)
题意: 输入N,M,S,D(N,M<=500,0<S,D<N),接下来M行输入一条边的起点,终点,通过时间和通过花费.求花费最小的最短路,输入这条路径包含起点终点,通过时间和通过花费 ...
- 1030 Travel Plan (30分)(dijkstra 具有多种决定因素)
A traveler's map gives the distances between cities along the highways, together with the cost of ea ...
- PAT 1030 Travel Plan[图论][难]
1030 Travel Plan (30)(30 分) A traveler's map gives the distances between cities along the highways, ...
- [图算法] 1030. Travel Plan (30)
1030. Travel Plan (30) A traveler's map gives the distances between cities along the highways, toget ...
- PAT Advanced 1030 Travel Plan (30) [Dijkstra算法 + DFS,最短路径,边权]
题目 A traveler's map gives the distances between cities along the highways, together with the cost of ...
- PAT甲题题解-1030. Travel Plan (30)-最短路+输出路径
模板题最短路+输出路径如果最短路不唯一,输出cost最小的 #include <iostream> #include <cstdio> #include <algorit ...
- PAT A 1030. Travel Plan (30)【最短路径】
https://www.patest.cn/contests/pat-a-practise/1030 找最短路,如果有多条找最小消耗的,相当于找两次最短路,可以直接dfs,数据小不会超时. #incl ...
- 1030 Travel Plan (30)(30 分)
A traveler's map gives the distances between cities along the highways, together with the cost of ea ...
随机推荐
- 数据库中的同义词synonym
一.Oracle数据只有一个实例(简单理解就是Oracle 只能建立一个数据库,不像MySQL,它下面可以创建N个库),那么Oracle是根据用户灵活去管理的:这点读起来.理解 起来也不那么难 ...
- 027 H5常用标签
只记录一下比较有趣的知识点. 一:新标签 1.选项列表datalist <!DOCTYPE html> <html lang="en"> <head& ...
- 利用 Memory Dump Diagnostic for Java (MDD4J) 分析内存管理问题
利用 Memory Dump Diagnostic for Java (MDD4J) 分析内存管理问题(2) 启动和理解 MDD4J[size=1.0625]为了充分理解如何使用 MDD4J,您需要了 ...
- typescript接口扩展
/* typeScript中的接口 接口扩展 */ /* 接口的作用:在面向对象的编程中,接口是一种规范的定义,它定义了行为和动作的规范,在程序设计里面,接口起到一种限制和规范的作用.接口定义了某一批 ...
- ISO/IEC 9899:2011 条款5——5.2 环境上的考虑
5.2 环境上的考虑 5.2.1 字符集 5.2.2 字符显示语义 5.2.3 信号与中断 5.2.4 环境限制
- ISO/IEC 9899:2011 条款6.7.3——类型限定符
6.7.3 类型限定符 语法 1.type-qualifier: const restrict volatile _Atomic 约束 2.除了指针类型(其被引用的类型是一个对象类型)之外的类型,不应 ...
- faster_rcnn mAP
- Python高级笔记(七)魔法属性
1. 私有属性 名字重整 print(Test.__dict__) {'__weakref__': <attribute '__weakref__' of 'Test' objects>, ...
- RabbitMQ 入门教程(PHP版) 第四部分:路由(Routing)
路由(Routing) 在前面的第三部分教程中,我们实现了一个简单的日志系统.可以把日志消息广播给多个接收者. 本篇教程中我们打算新增一个功能——使得它能够只订阅消息的一个字集.例如,我们只需要把严重 ...
- windows10 环境下的RabbitMQ安装步骤(图文)
第一步:下载并安装erlang 原因:RabbitMQ服务端代码是使用并发式语言Erlang编写的,安装Rabbit MQ的前提是安装Erlang. 下载地址:http://www.erlang.or ...