PAT 1030 最短路最小边权 堆优化dijkstra+DFS

1030 Travel Plan (30 分)

A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (≤500) is the number of cities (and hence the cities are numbered from 0 to N−1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:

City1 City2 Distance Cost

where the numbers are all integers no more than 500, and are separated by a space.

Output Specification:

For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.

Sample Input:

4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20

Sample Output:

0 2 3 3 40

题目大意:求起点到终点的最短路径最短距离和花费,要求首先路径最短,其次花费最少,要输出完整路径

分析:Dijksta + DFS。 Dijkstra记录路径pre数组,然后用dfs求最短的一条mincost以及它的路径path,最后输出path数组和mincost

注意路径path因为是从末端一直压入push_back到path里面的,所以要输出路径的时候倒着输出

关键是DFS的写法,应该是在一个链状的图数据结构上进行搜索,所以先加一个判断条件,如果到了起点就统计总长度,如果更小,更新anscost并更新path.注意这个时候仍然要pop_back(),没准还有一条更短的路径能够通向起点,之后dfs之后pop_back是常规操作.

void dfs(int v)
{
temppath.push_back(v);
if(v==from)
{
int tempcost=0;
for(int i=temppath.size()-1;i>=1;i--)
{
int id=temppath[i];
int nextid=temppath[i-1];
tempcost+=length[id][nextid];
}
if(tempcost<anscost)
{
path=temppath;
anscost=tempcost;
}
temppath.pop_back();//还得继续迭代呢,没准费用更小
return ;
}
for(int i=0;i<pre[v].size();i++)
{
dfs(pre[v][i]);
}
temppath.pop_back();
}
#include <iostream>
#include<bits/stdc++.h>
#define each(a,b,c) for(int a=b;a<=c;a++)
#define de(x) cout<<#x<<" "<<(x)<<endl
using namespace std; const int maxn=500+5;
const int inf=0x3f3f3f3f; int dis[maxn];
bool vis[maxn];
vector<int>pre[maxn];
vector<int>path,temppath;
int length[maxn][maxn]; struct Edge
{
int v;
int len;
int cost;
Edge(int v,int len,int cost):v(v),len(len),cost(cost){}
};
vector<Edge>G[maxn];
struct node
{
int v;
int len;
node(int v=0,int len=0):v(v),len(len){}
bool operator<(const node&r)const
{
return len>r.len;
}
};
void dijkstra(int n,int start)
{
each(i,0,n-1)
{
vis[i]=false;
dis[i]=inf; }
dis[start]=0;
priority_queue<node>Q;
node temp;
Q.push(node(start,0));
while(!Q.empty())
{
temp=Q.top();
Q.pop();
int u=temp.v;
if(vis[u])continue;
vis[u]=true;
for(int i=0;i<(int)G[u].size();i++)
{
int v=G[u][i].v;
int len=G[u][i].len;
int cost=G[u][i].cost;
if(!vis[v]&&dis[v]>dis[u]+len)
{
dis[v]=dis[u]+len;
pre[v].clear();
pre[v].push_back(u);
Q.push(node(v,dis[v]));
}
else if(!vis[v]&&dis[v]==dis[u]+len)///我佛拉
{
pre[v].push_back(u);
///需不需要push呢????????
} }
}
}
/*
4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20
*/
int n,m,from,to;
int anscost;
void dfs(int v)
{
temppath.push_back(v);
if(v==from)
{
int tempcost=0;
for(int i=temppath.size()-1;i>=1;i--)
{
int id=temppath[i];
int nextid=temppath[i-1];
tempcost+=length[id][nextid];
}
if(tempcost<anscost)
{
path=temppath;
anscost=tempcost;
}
temppath.pop_back();//还得继续迭代呢,没准费用更小
return ;
}
for(int i=0;i<pre[v].size();i++)
{
dfs(pre[v][i]);
}
temppath.pop_back();
}
int main()
{
anscost=inf;
cin>>n>>m>>from>>to;
while(m--)
{
int a,b,l,cost;
scanf("%d%d%d%d",&a,&b,&l,&cost);
G[a].push_back(Edge(b,l,cost));
G[b].push_back(Edge(a,l,cost));
length[a][b]=length[b][a]=cost;
}
dijkstra(n,from);
dfs(to);
for(int i=path.size()-1;i>=0;i--)
{
printf("%d ",path[i]);
}
printf("%d %d\n",dis[to],anscost);
return 0;
}

PAT-1030 Travel Plan (30 分) 最短路最小边权 堆优化dijkstra+DFS的更多相关文章

  1. PAT 甲级 1030 Travel Plan (30 分)(dijstra,较简单,但要注意是从0到n-1)

    1030 Travel Plan (30 分)   A traveler's map gives the distances between cities along the highways, to ...

  2. 【PAT甲级】1030 Travel Plan (30 分)(SPFA,DFS)

    题意: 输入N,M,S,D(N,M<=500,0<S,D<N),接下来M行输入一条边的起点,终点,通过时间和通过花费.求花费最小的最短路,输入这条路径包含起点终点,通过时间和通过花费 ...

  3. 1030 Travel Plan (30分)(dijkstra 具有多种决定因素)

    A traveler's map gives the distances between cities along the highways, together with the cost of ea ...

  4. PAT 1030 Travel Plan[图论][难]

    1030 Travel Plan (30)(30 分) A traveler's map gives the distances between cities along the highways, ...

  5. [图算法] 1030. Travel Plan (30)

    1030. Travel Plan (30) A traveler's map gives the distances between cities along the highways, toget ...

  6. PAT Advanced 1030 Travel Plan (30) [Dijkstra算法 + DFS,最短路径,边权]

    题目 A traveler's map gives the distances between cities along the highways, together with the cost of ...

  7. PAT甲题题解-1030. Travel Plan (30)-最短路+输出路径

    模板题最短路+输出路径如果最短路不唯一,输出cost最小的 #include <iostream> #include <cstdio> #include <algorit ...

  8. PAT A 1030. Travel Plan (30)【最短路径】

    https://www.patest.cn/contests/pat-a-practise/1030 找最短路,如果有多条找最小消耗的,相当于找两次最短路,可以直接dfs,数据小不会超时. #incl ...

  9. 1030 Travel Plan (30)(30 分)

    A traveler's map gives the distances between cities along the highways, together with the cost of ea ...

随机推荐

  1. Python监控rabbitmq的代码

    author:headsen chen date: 2019-07-26  17:22:24 notice: 个人原创 import requests, json, time, datetime fr ...

  2. APP:目录

    ylbtech-APP:目录 1.返回顶部   2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部     6.返回顶部     7.返回顶部   8.返回顶部   9.返回顶部   ...

  3. Office Tool Plus

    https://otp.landian.vip/zh-cn/index.html 本软件支持Microsoft Office办公软件最新版本高速下载.卸载.修复.定制化安装.静默安装等诸多功能. 同时 ...

  4. GitHub上优秀的开源资源

    (1)整理了所有跟编程相关的免费书籍 https://github.com/EbookFoundation/free-programming-books/blob/master/free-progra ...

  5. fkutter Stepper步骤指示器

    一个Material Design 步骤指示器,显示一系列步骤的过程 import 'package:flutter/material.dart'; class StepperDemo extends ...

  6. ISO/IEC 9899:2011 条款6.9——外部定义

    6.9 外部定义 语法 1.translation-unit: external-declaration translation-unit    external-declaration extern ...

  7. Spring cloud微服务安全实战-4-8Zuul网关安全开发(一)

    安全相关的代码和业务逻辑相关的代码实际上是在一个应用里面的,在这个应用里面,我们需要去,这个应用本身的处理逻辑里面需要去处理令牌和用户信息之间的转换. 然后我们需要去知道认证服务器的地址,这些都是耦合 ...

  8. 提供Web相关的个工具类

    package com.opslab.util.web; import com.opslab.util.ConvertUtil;import com.opslab.util.StringUtil; i ...

  9. Python环境的导入导出

    有很多情况下,需要做Python环境的迁移,比如在本地开发环境搭建了某套架构,并安装了需要依赖模块,那么就需要将原有的环境导出到目的机器上,可以使用pip freeze导出. 导出环境,在开发机器上设 ...

  10. Spring MVC 保存并获取属性参数

    在开发控制器的时候,有时也需要保存对应的数据到这些对象中去,或者从中获取数据.而Spring MVC给予了支持,它的主要注解有3个:@RequestAttribute.@SessionAttribut ...