P2212 [USACO14MAR]浇地Watering the Fields

题目描述

Due to a lack of rain, Farmer John wants to build an irrigation system to

send water between his N fields (1 <= N <= 2000).

Each field i is described by a distinct point (xi, yi) in the 2D plane,

with 0 <= xi, yi <= 1000. The cost of building a water pipe between two

fields i and j is equal to the squared Euclidean distance between them:

(xi - xj)^2 + (yi - yj)^2

FJ would like to build a minimum-cost system of pipes so that all of his

fields are linked together -- so that water in any field can follow a

sequence of pipes to reach any other field.

Unfortunately, the contractor who is helping FJ install his irrigation

system refuses to install any pipe unless its cost (squared Euclidean

length) is at least C (1 <= C <= 1,000,000).

Please help FJ compute the minimum amount he will need pay to connect all

his fields with a network of pipes.

农民约翰想建立一个灌溉系统,给他的NN (1 <= NN <= 2000)块田送水。农田在一个二维平面上,第i块农田坐标为(x_ixi​ , y_iyi​ )(0 <= x_ixi​ , y_iyi​ <= 1000),在农田ii 和农田jj 自己铺设水管的费用是这两块农田的欧几里得距离的平方(x_i - x_j)^2 + (y_i - y_j)^2(xi​−xj​)2+(yi​−yj​)2 。

农民约翰希望所有的农田之间都能通水,而且希望花费最少的钱。但是安装工人拒绝安装费用小于C的水管(1 <= CC <= 1,000,000)。

请帮助农民约翰建立一个花费最小的灌溉网络,如果无法建立请输出-1。

输入格式

  • Line 1: The integers N and C.

  • Lines 2..1+N: Line i+1 contains the integers xi and yi.

输出格式

  • Line 1: The minimum cost of a network of pipes connecting the

fields, or -1 if no such network can be built.

输入输出样例

输入 #1复制

3 11

0 2

5 0

4 3

输出 #1复制

46

说明/提示

INPUT DETAILS:

There are 3 fields, at locations (0,2), (5,0), and (4,3). The contractor

will only install pipes of cost at least 11.

OUTPUT DETAILS:

FJ cannot build a pipe between the fields at (4,3) and (5,0), since its

cost would be only 10. He therefore builds a pipe between (0,2) and (5,0)

at cost 29, and a pipe between (0,2) and (4,3) at cost 17.

Source: USACO 2014 March Contest, Silver

【思路】

生成树 + 克鲁斯卡尔 + 并查集

不得不吐槽一下

这道题作为绿题是真的有点水

先预处理出任意两个不相同的点之间的距离

用一个结构体储存起来

然后轻轻松松结构体排序一下

从第一个开始枚举

要满足先花费大于等于c

然后开始构建最小生成树

如果构建的出来

输出总花费

如果构建不出来

那就输出-1

何为构建不出来

用一个计数器计数已经使用了的边的个数

如果变数达到n-1条

也就是满足了让n个点连接的最少边数

那就可以结束了

如果枚举完全部的预处理出来的边之后

发现计数器计的数还不够n-1条边

那就是构建不出来咯

【完整代码】

#include<iostream>
#include<cstdio>
#include<algorithm> using namespace std;
const int Max = 2003;
struct node
{
int x,y;
int w;
}a[Max * Max];
int x[Max],y[Max];
int father[Max];
int n,c;
int sum = 0;
bool cmp(const node x,const node y)
{
return x.w < y.w;
}
int find(int x)
{
if(father[x] != x)father[x] = find(father[x]);
return father[x];
}
void hebing(int x,int y)
{
x = find(x);
y = find(y);
father[x] = y;
}
int main()
{
cin >> n >> c;
for(register int i = 1;i <= n;++ i)
father[i] = i;
for(register int i = 1;i <= n;++ i)
cin >> x[i] >> y[i];
for(register int i = 1;i <= n;++ i)
{
for(register int j = i + 1;j <= n;++ j)
{
if(i != j)
{
a[++ sum].x = i;
a[sum].y = j;
a[sum].w = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]);
}
}
}
sort(a + 1,a + 1 + sum,cmp);
int ans = 0;
int js = 0;
for(register int i = 1;i <= sum;++ i)
{
if(a[i].w >= c)
{
if(find(a[i].x) != find(a[i].y))
{
hebing(a[i].x,a[i].y);
js ++;
ans += a[i].w;
}
if(js == n - 1)
break;
}
}
if(js != n - 1)
cout << -1 << endl;
else
cout << ans << endl;
return 0;
}

洛谷 P2212 [USACO14MAR]浇地Watering the Fields 题解的更多相关文章

  1. 洛谷——P2212 [USACO14MAR]浇地Watering the Fields

    P2212 [USACO14MAR]浇地Watering the Fields 题目描述 Due to a lack of rain, Farmer John wants to build an ir ...

  2. 洛谷 P2212 [USACO14MAR]浇地Watering the Fields

    传送门 题解:计算欧几里得距离,Krusal加入边权大于等于c的边,统计最后树的边权和. 代码: #include<iostream> #include<cstdio> #in ...

  3. P2212 [USACO14MAR]浇地Watering the Fields

    P2212 [USACO14MAR]浇地Watering the Fields 题目描述 Due to a lack of rain, Farmer John wants to build an ir ...

  4. P2212 [USACO14MAR]浇地Watering the Fields 洛谷

    https://www.luogu.org/problem/show?pid=2212 题目描述 Due to a lack of rain, Farmer John wants to build a ...

  5. luogu题解 P2212 【浇地Watering the Fields】

    题目链接: https://www.luogu.org/problemnew/show/P2212 思路: 一道最小生成树裸题(最近居然变得这么水了),但是因为我太蒻,搞了好久,不过借此加深了对最小生 ...

  6. [USACO14MAR]浇地Watering the Fields

    题目描述 Due to a lack of rain, Farmer John wants to build an irrigation system tosend water between his ...

  7. 洛谷 P1879 [USACO06NOV]玉米田Corn Fields 题解

    P1879 [USACO06NOV]玉米田Corn Fields 题目描述 Farmer John has purchased a lush new rectangular pasture compo ...

  8. 洛谷P1879 [USACO06NOV]玉米田Corn Fields(状压dp)

    洛谷P1879 [USACO06NOV]玉米田Corn Fields \(f[i][j]\) 表示前 \(i\) 行且第 \(i\) 行状态为 \(j\) 的方案总数.\(j\) 的大小为 \(0 \ ...

  9. 洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)

    洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...

随机推荐

  1. .net core中的Session以及HttpContext对象使用小结

    session用于识别用户并保持用户信息,就是一个会话 ,在浏览器不关闭的前提下,可以保存用户的信息,比如登录的保存用户信息从一个网页跳转到另一个网页,你的用户信息就可以用session. .net ...

  2. C# vb .net实现真实阴影特效滤镜

    在.net中,如何简单快捷地实现Photoshop滤镜组中的真实阴影效果呢?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码: 设置授权 第 ...

  3. Win8.1下Flash Builder 提示: 找不到所需的Adobe Flash Player调试器版本,解决办法

    系统:Win8.1 x64 [解决]安装Flash DeBug最新版本补丁,注意下载对应系统的调试版本 下载地址:http://www.adobe.com/support/flashplayer/do ...

  4. Flink原理、实战与性能优化读书笔记

    第一章 ApacheFlink介绍 一.Flink优势 1. 目前唯一同时支持高吞吐.低延迟.高性能的分布式流式数据处理框架 2. 支持事件事件概念 3. 支持有状态计算,保持了事件原本产生的时序性, ...

  5. [LeetCode] 538. 把二叉搜索树转换为累加树 ☆(中序遍历变形)

    把二叉搜索树转换为累加树 描述 给定一个二叉搜索树(Binary Search Tree),把它转换成为累加树(Greater Tree),使得每个节点的值是原来的节点值加上所有大于它的节点值之和. ...

  6. 【数据泵】EXPDP导出表结构

    [数据泵]EXPDP导出表结构(真实案例) BLOG文档结构图         因工作需要现需要把一个生产库下的元数据(表定义,索引定义,函数定义,包定义,存储过程)导出到测试库上,本来以为很简单的, ...

  7. Java开发环境之JDK

    查看更多Java开发环境配置,请点击<Java开发环境配置大全> 零章:JDK安装教程 1)下载JDK安装包 http://www.oracle.com/technetwork/java/ ...

  8. Docker05-容器

    目录 容器介绍 创建容器 案例:创建 redis 的容器 查看容器列表 启动容器 案例:启动redis容器 案例:通过redis客户端进行测试 创建并运行容器 案例:创建并运行一个redis容器 停止 ...

  9. 【Audiophobia UVA - 10048 】【Floyd算法】

    题目大意:从a城市到b城市的路径中,尽可能让一路上的最大噪音最小. 题目思路:设d [ i ][ j ]表示 i 到 j 的最大噪音的最小值. 那么d [ i ][ j ] = min( d[ i ] ...

  10. 逆向破解之160个CrackMe —— 008-009

    CrackMe —— 008 160 CrackMe 是比较适合新手学习逆向破解的CrackMe的一个集合一共160个待逆向破解的程序 CrackMe:它们都是一些公开给别人尝试破解的小程序,制作 c ...