传送门

思路:

就是cdq套cdq的模板题

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 100005; struct node {
int d1, d2, d3, d4, part;
}a[N], b[N], d[N];
int n, ans; int c[N]; int lowbit(int x) {return x & (-x);} void add(int x, int v) {
for(; x < N; x += lowbit(x)) c[x] += v;
} int query(int x) {
int ans = 0;
for(; x; x -= lowbit(x)) ans += c[x];
return ans;
} void cdq2(int l, int r) {
if(l == r) return ;
int mid = (l + r) >> 1;
cdq2(l, mid); cdq2(mid + 1, r);
int t1 = l, t2 = mid + 1;
for(int i = l; i <= r; i++) {
if(t2 > r || (t1 <= mid && b[t1].d3 < b[t2].d3)) {
if(b[t1].part == 0) add(b[t1].d4, 1);
d[i] = b[t1++];
} else {
if(b[t2].part == 1) ans += query(b[t2].d4);
d[i] = b[t2++];
}
}
for(int i = l; i <= mid; i++) {
if(b[i].part == 0) add(b[i].d4, -1);
}
for(int i = l; i <= r; i++) b[i] = d[i];
} void cdq(int l, int r) {
if(l == r) return;
int mid = (l + r) >> 1;
cdq(l, mid); cdq(mid + 1, r);
int t1 = l, t2 = mid + 1;
for(int i = l; i <= r; i++) {
if(t2 > r || (t1 <= mid && a[t1].d2 < a[t2].d2)) {
a[t1].part = 0;
b[i] = a[t1++];
} else {
a[t2].part = 1;
b[i] = a[t2++];
}
}
for(int i = l; i <= r; i++) a[i] = b[i];
cdq2(l, r);
} int main() {
ios::sync_with_stdio(false); cin.tie(0);
cin >> n;
for(int i = 1; i <= n; i++) {
a[i].d1 = i;
cin >> a[i].d2;
}
for(int i = 1; i <= n; i++) cin >> a[i].d3;
for(int i = 1; i <= n; i++) cin >> a[i].d4;
cdq(1, n);
cout << ans;
return 0;
}

[HZOI 2016] 偏序(CDQ套CDQ)的更多相关文章

  1. 【教程】CDQ套CDQ——四维偏序问题

    前言 上一篇文章已经介绍了简单的CDQ分治,包括经典的二维偏序和三维偏序问题,还有带修改和查询的二维/三维偏序问题.本文讲介绍多重CDQ分治的嵌套,即多维偏序问题. 四维偏序问题       给定N( ...

  2. cogs2479 偏序(CDQ套CDQ)

    题目链接 思路 四维偏序 \(CDQ\)套\(CDQ\),第一维默认有序.第二维用第一个\(CDQ\)变成有序的.并且对每个点标记上第一维属于左边还是右边.第二个\(CDQ\)处理第三维,注意两个\( ...

  3. HDU - 5126: stars (求立方体内点数 CDQ套CDQ)

    题意:现在给定空空的三维平面,有加点操作和询问立方体点数. 思路:考虑CDQ套CDQ.复杂度是O(NlogN*logN*logN),可以过此题. 具体的,这是一个四维偏序问题,4维分别是(times, ...

  4. HDU5126---stars (CDQ套CDQ套 树状数组)

    题意:Q次操作,三维空间内 每个星星对应一个坐标,查询以(x1,y1,z1) (x2,y2,z2)为左下顶点 .右上顶点的立方体内的星星的个数. 注意Q的范围为50000,显然离散化之后用三维BIT会 ...

  5. COGS 2479. [HZOI 2016]偏序 [CDQ分治套CDQ分治 四维偏序]

    传送门 给定一个有n个元素的序列,元素编号为1~n,每个元素有三个属性a,b,c,求序列中满足i<j且ai<aj且bi<bj且ci<cj的数对(i,j)的个数. 对于100%的 ...

  6. 四维偏序 CDQ套CDQ

    对CDQ深一步的理解 昨天做了一道CDQ,看了一堆CDQ可做的题,今天又做了一道四维偏序 感觉对CDQ的理解又深了一点,故来写一写现在自己对于CDQ的理解 CDQ其实就是实现了这样的一个问题的转化: ...

  7. COGS 2479. [HZOI 2016] 偏序 (CDQ套CDQ)

    传送门 解题思路 四维偏序问题,模仿三维偏序,第一维排序,第二维CDQ,最后剩下二元组,发现没办法处理,就继续嵌套CDQ分治.首先把二元组的左右两边分别打上不同的标记,因为统计答案时只统计左边对右边的 ...

  8. HDU 5126 stars 4维偏序, CDQ套CDQ

    题目传送门 题意:在一个星空中,按着时间会出现一些点,现在john想知道,在某个时间内有多少个星星是的坐标是满足条件的.(x1<=x<=x2, y1 <= y <= y2, z ...

  9. hdu 5126 stars (四维偏序,离线,CDQ套CDQ套树状数组)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5126 思路:支持离线,那么我们可以用两次CDQ分治使四维降为二维,降成二维后排个序用树状数组维护下就好 ...

随机推荐

  1. WEB前端开发职业学习路线初级完整版

    作者 | Jeskson 来源 | 达达前端小酒馆 下面小编专门为广大web前端开发职业者汇总了学习路线初级完整版,其实web前端开发工程师可算是高福利,高薪水的职业了,所以现在学习web前端开发的技 ...

  2. 认识beanstalkd

    认识beanstalkd 背景  公司业务做某个需求是将数据写入到消息队列中,然后另外一个服务来消费数据,这里的消息队列使用的是beastalkd,之前接触到的消息队列为kafka,因此简单学习记录一 ...

  3. AtCoder Grand Contest 035 简要题解

    从这里开始 题目目录 Problem A XOR Circle 你发现,权值的循环节为 $a_0, a_1, a_0\oplus a_1$,然后暴力即可. Code #include <bits ...

  4. java web开发入门五(ssh整合)基于intellig idea

    SSH整合 1.引入jar包 Struts 核心jar Hibernate 核心jar Spring Core  核心功能 Web  对web模块支持 Aop   aop支持 Orm   对hiber ...

  5. c++性能测试工具:计算时间复杂度

    有时候除了测量算法的具体性能指数,我们也会希望测试出算法的时间复杂度,以便我们对待测试的算法的性能有一个更加直观的了解. 测量时间复杂度 google benchmark已经为我们提供了类似的功能,而 ...

  6. 2018-2019-2 20162329 《网络对抗技术》Exp7: 网络欺诈防范

    目录 Exp7: 网络欺诈防范 一. 基础问题回答 1. 通常在什么场景下容易受到DNS spoof攻击 二. 实验过程 1. 简单应用SET工具建立冒名网站 2. ettercap DNS spoo ...

  7. [Powershell]导出指定的定时计划任务

    <# .NOTES =========================================================================== Created wit ...

  8. Navicat Keygen - for Windows

    如何使用这个注册机 从这里下载最新的release. 使用navicat-patcher.exe替换掉navicat.exe和libcc.dll里的Navicat激活公钥. navicat-patch ...

  9. C++:inline

    inline inline是C++提供的一个关键字,它用于函数定义之前,表示把函数定义为内联函数.内联函数的含义是:在函数调用点把函数体直接展开,取代函数调用. inline int getZero( ...

  10. Windows安装Nginx需要注意的地方

      在使用 Nginx 之前,首先要三连问,它是什么?用来做什么?为什么用它? 这篇文章很好的解答了上面的问题,并补充了什么是正向代理和反向代理以及区别的知识 https://www.cnblogs. ...