题目描述:输入一个大小为\(n\)的正整数集合\(S\),求最大的\(x\),使得能构造一个\(0\)到\(2^x-1\)的排列\(p\),满足\(p_i\oplus p_{i+1}\in S\)

数据范围:\(n,S_i\le 2^{18}\)


什么?NTF在很多年前就把这东西给切了?

首先要把\(S\)缩成一个大小为\(x\)的线性无关组,而且每个数\(<2^x\),这样就可以构造出\(p\)了。(之后再说)

直接丢进线性基里就可以了吗?不行,应该是把\(<2^x\)的数全部加进去之后,看是不是填满了(有\(x\)个数),填满了就可以。

那现在的问题是怎么构造\(p\),发现每个\(d_i=p_i\oplus p_{i+1}\in S\),所以\(p_i\)是由\(S\)的子集异或出来的,而\(S\)是线性无关组就能保证异或出来的两两不同(恰有\(2^x\)个数)且无法更大。

所以就要构造\(S\)的子集构成的序列,使得相邻两个只差一个元素。有一个很妙的方法,先递归到两边分别计算(\([0,2^{x-1})\)和\([2^{x-1},2^x)\)),然后给右半边异或上\(S_x\)就可以满足这个条件了。

#include<bits/stdc++.h>
#define Rint register int
using namespace std;
const int N = 1 << 18;
int n, m, k, cnt, S[N], ans[N], x[19], a[19];
inline void insert(int val){
int tmp = val;
for(Rint i = 18;~i;i --)
if((val >> i) & 1){
if(x[i]) val ^= x[i];
else {x[i] = val; a[i] = tmp; ++ cnt; return;}
}
}
inline void dfs(int dep){
if(dep == -1) return;
dfs(dep - 1); ans[++ m] = a[dep]; dfs(dep - 1);
}
int main(){
scanf("%d", &n);
for(Rint i = 1;i <= n;i ++) scanf("%d", S + i);
sort(S + 1, S + n + 1);
for(Rint i = 1, j = 1;j < 19;j ++){
while(i <= n && S[i] < (1 << j)) insert(S[i ++]);
if(cnt == j) k = j;
}
printf("%d\n", k);
dfs(k);
for(Rint i = 0;i < (1 << k);i ++){
if(i) ans[i] ^= ans[i - 1];
printf("%d ", ans[i]);
}
}

CF1163E Magical Permutation【线性基,构造】的更多相关文章

  1. Codeforces 1163E Magical Permutation [线性基,构造]

    codeforces 思路 我顺着图论的标签点进去的,却没想到-- 可以发现排列内每一个数都是集合里的数异或出来的. 考虑答案的上界是多少.如果能用小于\(2^k\)的数构造出\([0,2^k-1]\ ...

  2. CF1163E Magical Permutation(线性基,构造)

    虽然做起来有一点裸……但是就是想不到啊…… 首先令 $d_i=p_i\oplus p_{i-1}$,那么 $d_i$ 都是 $S$ 中的数,$a_i=d_i\oplus d_{i-1}\oplus \ ...

  3. 51Nod1577 异或凑数 线性基 构造

    国际惯例的题面:异或凑出一个数,显然是线性基了.显然我们能把区间[l,r]的数全都扔进一个线性基,然后试着插入w,如果能插入,则说明w不能被这些数线性表出,那么就要输出"NO"了. ...

  4. CF1163E Magical Permutation

    题意:给定集合,求一个最大的x,使得存在一个0 ~ 2x - 1的排列,满足每相邻的两个数的异或值都在S中出现过.Si <= 2e5 解:若有a,b,c,令S1 = a ^ b, S2 = b ...

  5. BZOJ3569: DZY Loves Chinese II(线性基构造)

    Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生.   今Dzy有一魞歄图, ...

  6. bzoj 4004 [JLOI2015]装备购买 拟阵+线性基

    [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 547[Submit][Status][Dis ...

  7. Codeforces.472F.Design Tutorial: Change the Goal(构造 线性基 高斯消元)

    题目链接 \(Description\) 给定两个长为\(n\)的数组\(x_i,y_i\).每次你可以选定\(i,j\),令\(x_i=x_i\ \mathbb{xor}\ x_j\)(\(i,j\ ...

  8. 【HDU 3949】 XOR (线性基,高斯消元)

    XOR Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. 高斯消元 & 线性基【学习笔记】

    高斯消元 & 线性基 本来说不写了,但还是写点吧 [update 2017-02-18]现在发现真的有好多需要思考的地方,网上很多代码感觉都是错误的,虽然题目通过了 [update 2017- ...

随机推荐

  1. asp.net WEB简单打印

    ASP.NET网页打印 2018.08.26 18:50 1096浏览   昨晚朋友要求在前段时间完成的新闻的网站上加上一个功能,就是在每篇新闻浏览的页面, 加一个打印铵钮.让用户一点打印,能把整篇文 ...

  2. postman 测试Api接口注意事项

    1.简单数据传输 2.对象传输 使用的是post方式请求 在Headers设置: 在Body写入对象信息,主要红线的地方:1.raw选中 2.j'son格式 form表单提交数据测试 在header里 ...

  3. Linux环境下安装SVN

    最近在研究svn的代码如何迁移到GitLab,因此借助本文,重新来回顾温习下svn的安装使用. 一.SVN的安装 svn的安装很简单,在互联网的环境,直接执行以下命令行即可. yum install ...

  4. PKCS 标准

    PKCS 标准 The Public-Key Cryptography Standards (PKCS)是由美国RSA数据安全公司及其合作伙伴制定的一组公钥密码学标准,其中包括证书申请.证书更新.证书 ...

  5. HTML5的常用的标签

    HTML5对比HTML4新增了很多元素,也删除了部分元素(可以用css样式表方式替代)所以我只列出HTML5最常用的几个标签. head标签中: <meta http-equiv="X ...

  6. 【JavaWEB SSH】jsp页面传值后台Controller 部分值绑定不上实体类

    //前端ajax代码 1 var oldpassword = $('#old_password').val(); var password = $('#L_pass').val(); var user ...

  7. HTML学习摘要3

    DAY 3 浏览器会自动地在标题的前后添加空行 默认情况下,HTML 会自动地在块级元素前后添加一个额外的空行,比如段落.标题元素前后. <hr /> 标签在 HTML 页面中创建水平线. ...

  8. Qt 利用飞机图片画五边形

    最近练习Qt,需要一个飞机在屏幕上画五边形.虽然达到的效果不是非常的理想,但是勉强还是达到了效果,欢迎大家指正.用到的飞机图片如下. 第一步:初始化,在构造函数里面,把图片向左旋转18° );ui.l ...

  9. 服务接口,选择rpc还是http?

    从通信内容/功能上看 http应用于web环境,rpc应用于分布式调度从功能上看没有太大区别,很多情况下rpc与消息中间件结合通信实现分布式调度 从用法上看两者都是c/s结构,无太大区别 从实现上看类 ...

  10. springboot学习入门简易版六---springboot2.0整合全局捕获异常及log4j日志(12-13)

    使用Aop实现 1创建异常请求 在原有项目基础上,jspController中创建一个可能发生异常的请求: /** * 全局捕获异常测试 * @param i * @return */ @Reques ...