题目描述:输入一个大小为\(n\)的正整数集合\(S\),求最大的\(x\),使得能构造一个\(0\)到\(2^x-1\)的排列\(p\),满足\(p_i\oplus p_{i+1}\in S\)

数据范围:\(n,S_i\le 2^{18}\)


什么?NTF在很多年前就把这东西给切了?

首先要把\(S\)缩成一个大小为\(x\)的线性无关组,而且每个数\(<2^x\),这样就可以构造出\(p\)了。(之后再说)

直接丢进线性基里就可以了吗?不行,应该是把\(<2^x\)的数全部加进去之后,看是不是填满了(有\(x\)个数),填满了就可以。

那现在的问题是怎么构造\(p\),发现每个\(d_i=p_i\oplus p_{i+1}\in S\),所以\(p_i\)是由\(S\)的子集异或出来的,而\(S\)是线性无关组就能保证异或出来的两两不同(恰有\(2^x\)个数)且无法更大。

所以就要构造\(S\)的子集构成的序列,使得相邻两个只差一个元素。有一个很妙的方法,先递归到两边分别计算(\([0,2^{x-1})\)和\([2^{x-1},2^x)\)),然后给右半边异或上\(S_x\)就可以满足这个条件了。

#include<bits/stdc++.h>
#define Rint register int
using namespace std;
const int N = 1 << 18;
int n, m, k, cnt, S[N], ans[N], x[19], a[19];
inline void insert(int val){
int tmp = val;
for(Rint i = 18;~i;i --)
if((val >> i) & 1){
if(x[i]) val ^= x[i];
else {x[i] = val; a[i] = tmp; ++ cnt; return;}
}
}
inline void dfs(int dep){
if(dep == -1) return;
dfs(dep - 1); ans[++ m] = a[dep]; dfs(dep - 1);
}
int main(){
scanf("%d", &n);
for(Rint i = 1;i <= n;i ++) scanf("%d", S + i);
sort(S + 1, S + n + 1);
for(Rint i = 1, j = 1;j < 19;j ++){
while(i <= n && S[i] < (1 << j)) insert(S[i ++]);
if(cnt == j) k = j;
}
printf("%d\n", k);
dfs(k);
for(Rint i = 0;i < (1 << k);i ++){
if(i) ans[i] ^= ans[i - 1];
printf("%d ", ans[i]);
}
}

CF1163E Magical Permutation【线性基,构造】的更多相关文章

  1. Codeforces 1163E Magical Permutation [线性基,构造]

    codeforces 思路 我顺着图论的标签点进去的,却没想到-- 可以发现排列内每一个数都是集合里的数异或出来的. 考虑答案的上界是多少.如果能用小于\(2^k\)的数构造出\([0,2^k-1]\ ...

  2. CF1163E Magical Permutation(线性基,构造)

    虽然做起来有一点裸……但是就是想不到啊…… 首先令 $d_i=p_i\oplus p_{i-1}$,那么 $d_i$ 都是 $S$ 中的数,$a_i=d_i\oplus d_{i-1}\oplus \ ...

  3. 51Nod1577 异或凑数 线性基 构造

    国际惯例的题面:异或凑出一个数,显然是线性基了.显然我们能把区间[l,r]的数全都扔进一个线性基,然后试着插入w,如果能插入,则说明w不能被这些数线性表出,那么就要输出"NO"了. ...

  4. CF1163E Magical Permutation

    题意:给定集合,求一个最大的x,使得存在一个0 ~ 2x - 1的排列,满足每相邻的两个数的异或值都在S中出现过.Si <= 2e5 解:若有a,b,c,令S1 = a ^ b, S2 = b ...

  5. BZOJ3569: DZY Loves Chinese II(线性基构造)

    Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生.   今Dzy有一魞歄图, ...

  6. bzoj 4004 [JLOI2015]装备购买 拟阵+线性基

    [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 547[Submit][Status][Dis ...

  7. Codeforces.472F.Design Tutorial: Change the Goal(构造 线性基 高斯消元)

    题目链接 \(Description\) 给定两个长为\(n\)的数组\(x_i,y_i\).每次你可以选定\(i,j\),令\(x_i=x_i\ \mathbb{xor}\ x_j\)(\(i,j\ ...

  8. 【HDU 3949】 XOR (线性基,高斯消元)

    XOR Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. 高斯消元 & 线性基【学习笔记】

    高斯消元 & 线性基 本来说不写了,但还是写点吧 [update 2017-02-18]现在发现真的有好多需要思考的地方,网上很多代码感觉都是错误的,虽然题目通过了 [update 2017- ...

随机推荐

  1. 【1】BIO与NIO、AIO的区别

    一.BIO 在JDK1.4出来之前,我们建立网络连接的时候采用BIO模式,需要先在服务端启动一个ServerSocket,然后在客户端启动Socket来对服务端进行通信,默认情况下服务端需要对每个请求 ...

  2. 使用activiti的designer插件记录

    1.activiti添加排他网,条件下载condition中 2.activiti添加监听Listener,知道3种方法 1.实现taskListener 通过加载java class的方式去加载实现 ...

  3. ubuntu 12.04 下nginx安装步骤

    2013-12-05 10:25 2289人阅读 评论(0) 收藏 举报  分类: Ubuntu/Linux(17)  nginx(4)  转自:http://blog.csdn.net/acccca ...

  4. C# Attribute 名称和使用的问题

    如果定义Attribute时, 名字是以Attribute结尾的, 在使用的时候, 就可以省略Attribute, 直接写前面的名字, 但是这样真的好吗? 自以为帮程序员省了一个单词, 然而 真理不再 ...

  5. 【方法】list<?> 两个list集合 查找不同元素,求差值

    //方法1 //自己声明list//思路,从list1中删除list2中相同的元素//使用循环遍历对比的方式删除//list1包含list2,list1多与list2//结束得出list1为不相同元素 ...

  6. Part_four:redis主从复制

    redis主从复制 1.redis主从同步 Redis集群中的数据库复制是通过主从同步来实现的 主节点(Master)把数据分发从节点(slave) 主从同步的好处在于高可用,Redis节点有冗余设计 ...

  7. JavaScript之运算符

    (1)赋值运算符 // c+=1; // 相当于c=c+1; // console.log(a++); // 先将a的值赋值给表达式,a再加1 // console.log(++a); // a先加1 ...

  8. js 删除 数组中某个元素(转载)

    来源:https://www.jb51.net/article/134312.htm js删除数组中某一项或几项的几种方法 https://www.jb51.net/article/154737.ht ...

  9. 「8-27

    没有别的目的, 是最近发现一个小软件, 用起来感觉很不错, 所以想分享给大家. 首先这是一个 macOS 软件, 它的功能也很简单, 就是在菜单栏显示日期时间, 点按它可以显示日历, 没错, 简单到是 ...

  10. Linux下使用shell脚本自动备份和移动数据到大容量存储

    自动备份数据库,并将备份前一天的数据移动拷贝到存储上. 需求来源是因为linux系统层的磁盘存储容量过小,数据库自动备份之后日积月累数据越来越多,而且还不想删除旧数据.那解决方法就是在linux系统主 ...