package map;

import org.junit.Test;

import com.mysql.cj.api.x.Collection;

import map.TreeMap1.AscendingSubMap.AscendingEntrySetView;
import map.TreeMap1.NavigableSubMap.SubMapEntryIterator; import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import java.util.SortedMap;
import java.util.Spliterator;
import java.util.TreeMap;
import java.util.function.Consumer; public class TestRBT { @SuppressWarnings({ "unchecked", "rawtypes", "unused" })
public static void testInsert() throws Exception {
System.out.println("computeRedLevel:"+TreeMap1.computeRedLevel(12));
TreeMap1<Integer, Integer> mapr = new TreeMap1<Integer, Integer>();
mapr.put(10, 10);
mapr.put(12, 12); TreeMap1<Integer, Integer> map = new TreeMap1<Integer, Integer>();
map.put(0, 0);
Set<Map.Entry<Integer, Integer>> ss2 = map.entrySet();
map.put(1, 1);//Eclipse移到map上面去显示的是map的toString()方法或者父类的toString()方法。
Set<Map.Entry<Integer, Integer>> ss1 = map.entrySet();
System.out.println(map.toString());//toString是AbstractMap1的方法
map.put(2, 2);
map.put(3, 3);
map.put(4, 4);
map.put(5, 5);
map.put(6, 6);
map.put(7, 7);
map.put(8, 8);
map.put(9, 9);
map.put(10, 10);
Set<Map.Entry<Integer, Integer>> ss = map.entrySet();
// Collection c = (Collection) map.values(); TreeMap1<Integer, Integer> map1 = new TreeMap1<Integer, Integer>(map);
map1.putAll(map);
System.out.println(map1.toString());//5-BLACK-5 2-BLACK-2 8-BLACK-8 0-BLACK-0 3-BLACK-3 6-BLACK-6 9-BLACK-9 1-RED-1 4-RED-4 7-RED-7 10-RED-10 Spliterator s2 = map1.keySet().spliterator();//前面分割出去,留下来后面的。
Spliterator s21 = s2.trySplit();//分割出去的21:开始0结束root,side=-1,est=5。留下来的s2:开始root结束null,side=1,est=5
Spliterator s22 = s21.trySplit();//出去的再分割,出去前面的(0---root.left),留下来的(root.left----root)
Spliterator s23 = s2.trySplit();//留下来的再分割, Spliterator s1 = map1.entrySet().spliterator();
Spliterator s11 = s1.trySplit(); Spliterator s3 = map1.values().spliterator(); AscendingEntrySetView sm = (AscendingEntrySetView) map1.subMap(3, 6).entrySet();//[[键=3,值=3,色=黑], [键=4,值=4,色=红], [键=5,值=5,色=黑]]
int i = sm.size();
SubMapEntryIterator sit = (SubMapEntryIterator) sm.iterator();
while(sit.hasNext()) {
System.out.println(sit.next());
} } public static void main(String[] args) throws Exception {
testInsert();
}
}
package map;//不是线程安全的,要想线程安全就要:SortedMap m = Collections.synchronizedSortedMap(new TreeMap1());
public class TreeMap1<K, V> extends AbstractMap1<K, V> implements NavigableMap<K, V>, Cloneable, Serializable {
private final Comparator<? super K> comparator;
private transient Entry<K, V> root;// 根节点
private transient int size = 0;// 节点个数
private transient int modCount = 0;// 修改次数
public Entry<K, V> Root(){
return root;
}
public TreeMap1() {
//该类型的compareTo方法来比较大小。String类的compareTo方法比对大小,Integer的compareTo方法比对。
comparator = null;
} public String toString() {//层序输出红黑树
TreeMap1.Entry root= this.root;
if(root==null){
return "";
}
StringBuffer sb = new StringBuffer();
Queue<Entry<K, V>> queue=new LinkedList<Entry<K, V>>();
queue.offer(root);
int preCount=1;
int pCount=0;
while(!queue.isEmpty()){
Entry<K, V> p=queue.poll();
preCount--;
printTreeNode(p,sb);
if(p.getLeft()!=null){
queue.offer((Entry<K, V>)p.left);
pCount++;
}
if((Entry<K, V>)p.right!=null){
queue.offer((Entry<K, V>)p.right);
pCount++;
}
if(preCount==0){
preCount=pCount;
pCount=0;
}
}
return sb.toString();
} private static <K,V> void printTreeNode(Entry p,StringBuffer sb) {
boolean color=p.color;
String colorStr="";
if(color){
colorStr="BLACK";
}else{
colorStr="RED";
}
sb.append(p.getKey()+"-"+colorStr+"-"+p.getValue()+" ");
} public TreeMap1(Comparator<? super K> comparator) {
this.comparator = comparator;
} public TreeMap1(Map<? extends K, ? extends V> m) {//map不是有序的,
comparator = null;
putAll(m);
} public TreeMap1(SortedMap<K, ? extends V> m) {//map有序,通过iterator遍历添加。TreeMap是有序的。
comparator = m.comparator();
try {
buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
} public int size() {
return size;
} public boolean containsKey(Object key) {
return getEntry(key) != null;
} public boolean containsValue(Object value) {
for (Entry<K, V> e = getFirstEntry(); e != null; e = successor(e))// getFirstEntry() 是返回红黑树的第一个节点,successor(e)
// 是获取节点e的后继节点。从第一个节点依次找后继。
if (valEquals(value, e.value))
return true;
return false;
} public V get(Object key) {
Entry<K, V> p = getEntry(key);
return (p == null ? null : p.value);
} public Comparator<? super K> comparator() {
return comparator;
} public K firstKey() {// 获取第一个节点对应的key
return key(getFirstEntry());
} public K lastKey() {// 获取最后一个节点对应的key
return key(getLastEntry());
} // 已经有的key会替换
public void putAll(Map<? extends K, ? extends V> map) {
int mapSize = map.size();// map是已排序的“key-value对”
if (size == 0 && mapSize != 0 && map instanceof SortedMap) {// 没有元素就调用buildFromSorted方法
Comparator<?> c = ((SortedMap<?, ?>) map).comparator();
if (c == comparator || (c != null && c.equals(comparator))) {
++modCount;
try {
Set es = map.entrySet();
Iterator it = es.iterator();// map的iterator对象
buildFromSorted(mapSize, map.entrySet().iterator(), null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
return;
}
}
super.putAll(map);// 有元素调用正常的put方法,调用AbstractMap中的putAll(),又会调用到TreeMap的put()。map不是排序的,也调用这里。
} public final Entry<K, V> getEntry(Object key) {
if (comparator != null)// 若“比较器”为null,则通过getEntryUsingComparator()获取“键”为key的节点
return getEntryUsingComparator(key);
if (key == null)
throw new NullPointerException();
Comparable<? super K> k = (Comparable<? super K>) key;
Entry<K, V> p = root;
while (p != null) {// 依次找左右节点
int cmp = k.compareTo(p.key);
if (cmp < 0)
p = p.left;
else if (cmp > 0)
p = p.right;
else
return p;
}
return null;
} public final Entry<K, V> getEntryUsingComparator(Object key) {// 从根依次找左右节点,
K k = (K) key;
Comparator<? super K> cpr = comparator;
if (cpr != null) {
Entry<K, V> p = root;
while (p != null) {
int cmp = cpr.compare(k, p.key);
if (cmp < 0)
p = p.left;
else if (cmp > 0)
p = p.right;
else
return p;
}
}
return null;
} public final Entry<K, V> getCeilingEntry(K key) {// key最近的大,可以相等
Entry<K, V> p = root;
while (p != null) {
int cmp = compare(key, p.key);
if (cmp < 0) {// 小就左找
if (p.left != null)
p = p.left;
else// 为null就是p
return p; // p!=null因为在while循环里面,不可能这里返回null
} else if (cmp > 0) {// 大就右找
if (p.right != null) {
p = p.right;
} else {// 为null就找p的后继
Entry<K, V> ch = p;
Entry<K, V> parent = p.parent;
while (parent != null && ch == parent.right) {// 左节点退出
ch = parent;
parent = parent.parent;
}
return parent;// parent有可能这里返回null,就是都比key小,没有比key大的。
}
} else// 相等就是这个
return p;
}
return null;// root=null,
} public final Entry<K, V> getFloorEntry(K key) {// 最近的小,可以相等
Entry<K, V> p = root;
while (p != null) {
int cmp = compare(key, p.key);
if (cmp > 0) {
if (p.right != null)
p = p.right;
else
return p;
} else if (cmp < 0) {
if (p.left != null) {
p = p.left;
} else {
Entry<K, V> parent = p.parent;
Entry<K, V> ch = p;
while (parent != null && ch == parent.left) {// 右节点退出
ch = parent;
parent = parent.parent;
}
return parent;
}
} else
return p; }
return null;
} public final Entry<K, V> getHigherEntry(K key) {// key最近的大,相等就往上再找最近的大。
Entry<K, V> p = root;
while (p != null) {
int cmp = compare(key, p.key);
if (cmp < 0) {
if (p.left != null)
p = p.left;
else
return p;
} else {//相等找右边的,继续找大的。再次while肯定小于0。
if (p.right != null) {
p = p.right;
} else {
Entry<K, V> parent = p.parent;
Entry<K, V> ch = p;
while (parent != null && ch == parent.right) {// 左节点退出
ch = parent;
parent = parent.parent;
}
return parent;
}
}
}
return null;
} public final Entry<K, V> getLowerEntry(K key) {// 最近的小,相等继续找小的。
Entry<K, V> p = root;
while (p != null) {
int cmp = compare(key, p.key);
if (cmp > 0) {
if (p.right != null)
p = p.right;
else
return p;
} else {//相等找左边的,继续找小的。
if (p.left != null) {
p = p.left;
} else {
Entry<K, V> parent = p.parent;
Entry<K, V> ch = p;
while (parent != null && ch == parent.left) {
ch = parent;
parent = parent.parent;
}
return parent;
}
}
}
return null;
} public V put(K key, V value) {
Entry<K, V> t = root;
if (t == null) {
compare(key, key); // 类型检查,有可能是null。
root = new Entry<>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K, V> parent;// 2个指针,一个父节点一个子节点,指向查找过程中的parent,t。parent也是新加入节点的父节点,t是新加入节点的位置。
Comparator<? super K> cpr = comparator;
if (cpr != null) {
do {
parent = t;// 修改parent为t,下面重新设置t,
cmp = cpr.compare(key, t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);// 一直t=null退出,
} else {
if (key == null)
throw new NullPointerException();
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;// 向下修改parent,下面重新设置t,
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);// t=null退出,
}
Entry<K, V> e = new Entry<>(key, value, parent);
if (cmp < 0)
parent.left = e;
else
parent.right = e;// 插入元素完毕 fixAfterInsertion(e);// 从新插入的元素开始调整,依次向上移动,直到根节点退出。 size++;// 节点个数
modCount++;
return null;
} public V remove(Object key) {
Entry<K, V> p = getEntry(key);
if (p == null)
return null; V oldValue = p.value;
deleteEntry(p);
return oldValue;
} public void clear() {
modCount++;
size = 0;
root = null;
} public Object clone() {// 浅拷贝。
TreeMap1<?, ?> clone;
try {
clone = (TreeMap1<?, ?>) super.clone();// 类的成员变量如果是对象,地址也是一样的。
} catch (CloneNotSupportedException e) {
throw new InternalError(e);
} // 除了比较器,都设置为初始状态,重新设置成员变量的地址。
clone.root = null;
clone.size = 0;
clone.modCount = 0;
clone.entrySet = null;
clone.navigableKeySet = null;
clone.descendingMap = null; try {
clone.buildFromSorted(size, entrySet().iterator(), null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
} return clone;
} public Map.Entry<K, V> firstEntry() {
return exportEntry(getFirstEntry());//SimpleImmutableEntry封装0
} public Map.Entry<K, V> lastEntry() {
return exportEntry(getLastEntry());//SimpleImmutableEntry封装
} public Map.Entry<K, V> pollFirstEntry() {// 获取第一个节点,并将改节点从TreeMap中删除。
Entry<K, V> p = getFirstEntry();
Map.Entry<K, V> result = exportEntry(p);
if (p != null)
deleteEntry(p);
return result;
} public Map.Entry<K, V> pollLastEntry() {// 获取最后一个节点,并将改节点从TreeMap中删除。
Entry<K, V> p = getLastEntry();
Map.Entry<K, V> result = exportEntry(p);
if (p != null)
deleteEntry(p);
return result;
} public Map.Entry<K, V> lowerEntry(K key) {// 返回小于key的最大的键值对,
return exportEntry(getLowerEntry(key));
} public K lowerKey(K key) {// 返回小于key的最大的键值对所对应的KEY
return keyOrNull(getLowerEntry(key));
} public Map.Entry<K, V> floorEntry(K key) {// 返回不大于key的最大的键值对
return exportEntry(getFloorEntry(key));
} public K floorKey(K key) {// 返回不大于key的最大的键值对所对应的KEY,
return keyOrNull(getFloorEntry(key));
} public Map.Entry<K, V> ceilingEntry(K key) {// 返回不小于key的最小的键值对
return exportEntry(getCeilingEntry(key));
} public K ceilingKey(K key) {// 返回不小于key的最小的键值对所对应的KEY
return keyOrNull(getCeilingEntry(key));
} public Map.Entry<K, V> higherEntry(K key) {// 返回大于key的最小的键值对
return exportEntry(getHigherEntry(key));
} public K higherKey(K key) {// 返回大于key的最小的键值对所对应的KEY,
return keyOrNull(getHigherEntry(key));
} public transient EntrySet entrySet;// TreeMap的红黑树节点对应的集合
public transient KeySet<K> navigableKeySet;// TreeMap的红黑树节点对应的Key集合
public transient NavigableMap<K, V> descendingMap; final int compare(Object k1, Object k2) {
return comparator == null ? ((Comparable<? super K>) k1).compareTo((K) k2) : comparator.compare((K) k1, (K) k2);
} static final boolean valEquals(Object o1, Object o2) {
return (o1 == null ? o2 == null : o1.equals(o2));
} static <K, V> Map.Entry<K, V> exportEntry(Entry<K, V> e) {
return (e == null) ? null : new SimpleImmutableEntry<>(e);
} static <K, V> K keyOrNull(Entry<K, V> e) {
return (e == null) ? null : e.key;
} static <K> K key(Entry<K, ?> e) {
if (e == null)
throw new NoSuchElementException();
return e.key;
} private static final boolean RED = false;
private static final boolean BLACK = true; static final class Entry<K, V> implements Map.Entry<K, V> {
public K key;
public V value;
public Entry<K, V> left;
public Entry<K, V> right;
public Entry<K, V> parent;
boolean color = BLACK;// 默认黑色 Entry(K key, V value, Entry<K, V> parent) {// 默认是黑色
this.key = key;
this.value = value;
this.parent = parent;
} public K getKey() {
return key;
} public V getValue() {
return value;
} public Entry<K, V> getLeft() {
return left;
} public Entry<K, V> setLeft(Entry<K, V> left) {
this.left = left;
return left;
} public Entry<K, V> getRight() {
return right;
} public Entry<K, V> setRight(Entry<K, V> right) {
this.right = right;
return right;
} public Entry<K, V> getParent() {
return parent;
} public Entry<K, V> setParent(Entry<K, V> parent) {
this.parent = parent;
return parent;
} public V setValue(V value) {
V oldValue = this.value;
this.value = value;
return oldValue;
} public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
return valEquals(key, e.getKey()) && valEquals(value, e.getValue());
} public int hashCode() {
int keyHash = (key == null ? 0 : key.hashCode());
int valueHash = (value == null ? 0 : value.hashCode());
return keyHash ^ valueHash;
} public String toString() {
return "[键=" + key + ",值=" + value + ",色=" + (color == true ? "黑" : "红") + "]";
}
} final Entry<K, V> getFirstEntry() {// 第一个元素,最左边的元素,最小的元素。
Entry<K, V> p = root;
if (p != null)
while (p.left != null)
p = p.left;
return p;
} final Entry<K, V> getLastEntry() {// 最右边的元素
Entry<K, V> p = root;
if (p != null)
while (p.right != null)
p = p.right;
return p;
} // t.right和t.right.left不为null,后继是叶子节点。
static <K, V> Entry<K, V> successor(Entry<K, V> t) {// 寻找t的后继结点
if (t == null)
return null;
else if (t.right != null) {// 有右子树,右子树的最左边,
Entry<K, V> p = t.right;
while (p.left != null)
p = p.left;
return p;
} else {// 没有右子树
Entry<K, V> ch = t;
Entry<K, V> p = t.parent;
// 找到一个根节点,他在根节点左边
while (p != null && ch == p.right) {
ch = p;
p = p.parent;
}
return p;
}
} // t.left和t.left.right不为null,前驱是叶子节点。
static <K, V> Entry<K, V> predecessor(Entry<K, V> t) {
if (t == null)
return null;
else if (t.left != null) {// 左子树的最右边
Entry<K, V> p = t.left;
while (p.right != null)
p = p.right;
return p;
} else {// 没有左子树
Entry<K, V> p = t.parent;
Entry<K, V> ch = t;
while (p != null && ch == p.left) {// 找到一个根节点,他在根节点右边
ch = p;
p = p.parent;
}
return p;
}
} private static <K, V> boolean colorOf(Entry<K, V> p) {
return (p == null ? BLACK : p.color);// null是黑节点
} private static <K, V> Entry<K, V> parentOf(Entry<K, V> p) {
return (p == null ? null : p.parent);
} private static <K, V> void setColor(Entry<K, V> p, boolean c) {
if (p != null)
p.color = c;
} private static <K, V> Entry<K, V> leftOf(Entry<K, V> p) {
return (p == null) ? null : p.left;
} private static <K, V> Entry<K, V> rightOf(Entry<K, V> p) {
return (p == null) ? null : p.right;
} /* 旋转没有改变指针指向,但是改变了父子关系 */
private void rotateLeft(Entry<K, V> p) {
if (p != null) {
Entry<K, V> r = p.right;// ①
p.right = r.left;// ②
if (r.left != null)
r.left.parent = p;// ③
r.parent = p.parent;// ④
if (p.parent == null)
root = r;
else if (p.parent.left == p)
p.parent.left = r;// ⑤
else
p.parent.right = r;// ⑤
r.left = p;// ⑥
p.parent = r;// ⑦
}
} /* 旋转没有改变指针指向,但是改变了父子关系 */
private void rotateRight(Entry<K, V> p) {
if (p != null) {
Entry<K, V> l = p.left;
p.left = l.right;
if (l.right != null)
l.right.parent = p;
l.parent = p.parent;
if (p.parent == null)
root = l;
else if (p.parent.right == p)
p.parent.right = l;
else
p.parent.left = l;
l.right = p;
p.parent = l;
}
} /* 插入之后调整 */
private void fixAfterInsertion(Entry<K, V> x) {
x.color = RED;// 新插入节点变成红色
// 向上到根退出,父节点是黑色退出,所以父节点一定是红色。
while (x != null && x != root && x.parent.color == RED) {
if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {// x是爷爷的左边
Entry<K, V> y = rightOf(parentOf(parentOf(x)));// 爷爷的右节点
if (colorOf(y) == RED) {// 爷爷的右节点是红的,null是黑色。情况②
setColor(parentOf(x), BLACK);// 设置父节点为黑色
setColor(y, BLACK);// 自己爷爷右子树为黑色
setColor(parentOf(parentOf(x)), RED);// 设置爷爷为红色
x = parentOf(parentOf(x));// x指向爷爷继续判断
} else {// 爷爷的右节点是黑的
if (x == rightOf(parentOf(x))) {// x在父节点右边。情况①
x = parentOf(x);// x指向父亲
rotateLeft(x);// x又旋转下来,又指向儿子。
}
setColor(parentOf(x), BLACK);// 父亲为黑。情况③
setColor(parentOf(parentOf(x)), RED);// 爷爷为红
rotateRight(parentOf(parentOf(x)));// 右旋转爷爷
}
} else {// x是爷爷的右边
Entry<K, V> y = leftOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {// 爷爷的左节点是红色。情况④
setColor(parentOf(x), BLACK);// 父亲为黑色
setColor(y, BLACK);// 爷爷左节点为黑色
setColor(parentOf(parentOf(x)), RED);// 爷爷为红色
x = parentOf(parentOf(x));// x指向爷爷,继续while循环
} else {// 爷爷的左节点是黑色1.
if (x == leftOf(parentOf(x))) {// x在父亲左边。情况⑤
x = parentOf(x);
rotateRight(x);
}
setColor(parentOf(x), BLACK);// 父亲黑色。情况⑥
setColor(parentOf(parentOf(x)), RED);// 爷爷红色
rotateLeft(parentOf(parentOf(x)));
}
}
}
root.color = BLACK;
} private void deleteEntry(Entry<K, V> p) {//
modCount++;
size--;
// p有左右子节点,就把p替换成后驱的key和value,转而删除后驱。
if (p.left != null && p.right != null) {
Entry<K, V> s = successor(p);// p.right和p.right.left不为null,后继是叶子节点。
p.key = s.key;
p.value = s.value;// 修改key和value就可以了,left,right,parent不用改变。
p = s;// 转而去删除S
}
// 直接删除p,不用替换成后驱,不用转而删除后驱。 replacement替代p,replacement是p的左节点或者右节点。
Entry<K, V> replacement = (p.left != null ? p.left : p.right);//
if (replacement != null) {
// 修改replacement的parent,以及p.parent的左或者右指针。
replacement.parent = p.parent;//
if (p.parent == null)// p是根节点
root = replacement;
else if (p == p.parent.left)
p.parent.left = replacement;
else
p.parent.right = replacement; p.left = p.right = p.parent = null;// GC if (p.color == BLACK)// 删除的p是黑色就调整,黑高变了。
fixAfterDeletion(replacement);
} else if (p.parent == null) { // replacement=null,p的左右节点为null, p是孤立的点,就是根节点,现在移除根节点。
root = null;
} else { // replacement=null,p的左右节点为null,p.parent != null,p是叶子节点,直接删除。
if (p.color == BLACK)// 删除的p是黑色就调整,
fixAfterDeletion(p);
if (p.parent != null) {
if (p == p.parent.left)
p.parent.left = null;
else if (p == p.parent.right)
p.parent.right = null;
p.parent = null;
}
}
} /** From CLR */
private void fixAfterDeletion(Entry<K, V> x) {// replacement是黑色
while (x != root && colorOf(x) == BLACK) {
if (x == leftOf(parentOf(x))) {// 父节点左边
Entry<K, V> sib = rightOf(parentOf(x)); if (colorOf(sib) == RED) {// 父节点右边是红色
setColor(sib, BLACK);
setColor(parentOf(x), RED);
rotateLeft(parentOf(x));// x旋转到上面去了,
sib = rightOf(parentOf(x));// sib指向爷爷节点
}
// 爷爷左右是黑色
if (colorOf(leftOf(sib)) == BLACK && colorOf(rightOf(sib)) == BLACK) {
setColor(sib, RED);
x = parentOf(x);// x指向爷爷
} else {
if (colorOf(rightOf(sib)) == BLACK) {
setColor(leftOf(sib), BLACK);
setColor(sib, RED);
rotateRight(sib);
sib = rightOf(parentOf(x));
}
setColor(sib, colorOf(parentOf(x)));
setColor(parentOf(x), BLACK);
setColor(rightOf(sib), BLACK);
rotateLeft(parentOf(x));
x = root;
}
} else { // 父节点右边
Entry<K, V> sib = leftOf(parentOf(x)); if (colorOf(sib) == RED) {
setColor(sib, BLACK);
setColor(parentOf(x), RED);
rotateRight(parentOf(x));
sib = leftOf(parentOf(x));
} if (colorOf(rightOf(sib)) == BLACK && colorOf(leftOf(sib)) == BLACK) {
setColor(sib, RED);
x = parentOf(x);
} else {
if (colorOf(leftOf(sib)) == BLACK) {
setColor(rightOf(sib), BLACK);
setColor(sib, RED);
rotateLeft(sib);
sib = leftOf(parentOf(x));
}
setColor(sib, colorOf(parentOf(x)));
setColor(parentOf(x), BLACK);
setColor(leftOf(sib), BLACK);
rotateRight(parentOf(x));
x = root;
}
}
} setColor(x, BLACK);
} /** Intended to be called only from TreeSet.readObject */
void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
throws java.io.IOException, ClassNotFoundException {
buildFromSorted(size, null, s, defaultVal);
} /** Intended to be called only from TreeSet.addAll */
void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
try {
buildFromSorted(set.size(), set.iterator(), null, defaultVal);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
} // 假设在调用此方法之前已经设置了树映射1的比较器。
private void buildFromSorted(int size, Iterator<?> it, java.io.ObjectInputStream str, V defaultVal)
throws java.io.IOException, ClassNotFoundException {
this.size = size;
root = buildFromSorted(0, 0, size - 1, computeRedLevel(size), it, str, defaultVal);
} //从排序的Map里面取出部分元素,构造新的TreeMap
public final Entry<K, V> buildFromSorted(int level, int lo, int hi, int redLevel, Iterator<?> it,
java.io.ObjectInputStream str, V defaultVal) throws java.io.IOException, ClassNotFoundException {
if (hi < lo)//原Map的开始和截止位置
return null;
int mid = (lo + hi) >>> 1;
Entry<K, V> left = null;
if (lo < mid) //左节点
left = buildFromSorted(level + 1, lo, mid - 1, redLevel, it, str, defaultVal);
// extract key and/or value from iterator or stream
K key;
V value;
if (it != null) {
if (defaultVal == null) {
Map.Entry<?, ?> entry = (Map.Entry<?, ?>) it.next();//遍历器从最左边开始,依次后继,
key = (K) entry.getKey();
value = (V) entry.getValue();
} else {
key = (K) it.next();
value = defaultVal;
}
} else { // use stream
key = (K) str.readObject();
value = (defaultVal != null ? defaultVal : (V) str.readObject());
}
Entry<K, V> middle = new Entry<>(key, value, null);//默认黑色
// 只将红黑树最底端的阶段着色为红色,其余都是黑色。
if (level == redLevel)
middle.color = RED;
if (left != null) {//连接左节点
middle.left = left;
left.parent = middle;
}
if (mid < hi) {//连接右节点
Entry<K, V> right = buildFromSorted(level + 1, mid + 1, hi, redLevel, it, str, defaultVal);
middle.right = right;
right.parent = middle;
}
return middle;//返回中间节点
} public static int computeRedLevel(int sz) {//1:1,2:1,3:2,4:2,5:2,6:2,7:3,8:3,9:3,10:3,11:3,12:3
int level = 0;
for (int m = sz - 1; m >= 0; m = m / 2 - 1)
level++;
return level;
} private static final long serialVersionUID = 919286545866124006L; @Override
public boolean replace(K key, V oldValue, V newValue) {
Entry<K, V> p = getEntry(key);
if (p != null && Objects.equals(oldValue, p.value)) {
p.value = newValue;
return true;
}
return false;
} @Override
public V replace(K key, V value) {
Entry<K, V> p = getEntry(key);
if (p != null) {
V oldValue = p.value;
p.value = value;
return oldValue;
}
return null;
} @Override
public void forEach(BiConsumer<? super K, ? super V> action) {//从第一个一直后驱
Objects.requireNonNull(action);
int expectedModCount = modCount;
for (Entry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {
action.accept(e.key, e.value);
if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
} @Override
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {//从第一个一直寻找后驱
Objects.requireNonNull(function);
int expectedModCount = modCount;
for (Entry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {
e.value = function.apply(e.key, e.value);
if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
}
//-----------------------------------基本方法---------------------------------------
//---------------------------------Set-----------------Iterator----------------------------
//---Map有keySet()输出集合就有Set,Set有遍历和分割操作,所以有Iterator和Spliterator ---------子Map也有keySet和EntrySet--------
public Set<K> keySet() {// 修改map会影响keySet,修改keySet会影响map。
return navigableKeySet();
} public NavigableSet<K> navigableKeySet() {//KeySet
KeySet<K> nks = navigableKeySet;
return (nks != null) ? nks : (navigableKeySet = new KeySet<>(this));//this是TreeMap1
} public Collection<V> values() {// 修改map会影响values,修改values会影响map。
Collection<V> vs = values;
if (vs == null) {
vs = new Values();//是根据iterator()来确定值的,一定要有iterator()。是根据返回的ValueIterator的hasNext()和next()方法确定的。
values = vs;
}
return vs;
} public Set<Map.Entry<K, V>> entrySet() {// 修改map会影响entrySet,修改entrySet会影响map。
EntrySet es = entrySet;// 没有值
boolean b = es != null;
return (es != null) ? es : (entrySet = new EntrySet());// 有值
} class Values extends AbstractCollection<V> {
public Iterator<V> iterator() {
return new ValueIterator(getFirstEntry());
// ArrayList<String> aList=new ArrayList<String>();
// aList.add("a");
// aList.add("b");
// return (Iterator<V>) aList.iterator();
} public int size() {
return TreeMap1.this.size();
} public boolean contains(Object o) {
return TreeMap1.this.containsValue(o);
} public boolean remove(Object o) {
for (Entry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {
if (valEquals(e.getValue(), o)) {
deleteEntry(e);
return true;
}
}
return false;
} public void clear() {
TreeMap1.this.clear();
} public Spliterator<V> spliterator() {
return new ValueSpliterator<K, V>(TreeMap1.this, null, null, 0, -1, 0);
} // public String toString() {//Eclipse上vs = new Values()鼠标移到vs上显示的内容
// return "sss";
// }
} class EntrySet extends AbstractSet<Map.Entry<K, V>> {
public Iterator<Map.Entry<K, V>> iterator() {
return new EntryIterator(getFirstEntry());// renturn null就没有值了。Set里面的遍历使用的是Iterator。从前往后遍历Entry。
} public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?, ?> entry = (Map.Entry<?, ?>) o;
Object value = entry.getValue();
Entry<K, V> p = getEntry(entry.getKey());// 内部类可以直接访问外部类的方法
return p != null && valEquals(p.getValue(), value);
} public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?, ?> entry = (Map.Entry<?, ?>) o;
Object value = entry.getValue();
Entry<K, V> p = getEntry(entry.getKey());
if (p != null && valEquals(p.getValue(), value)) {
deleteEntry(p);
return true;
}
return false;
} public int size() {
return TreeMap1.this.size();
} public void clear() {
TreeMap1.this.clear();
} public String toString() {//鼠标移上去显示的内容
Iterator<Map.Entry<K, V>> i = iterator();
if (! i.hasNext())
return "{}";
StringBuilder sb = new StringBuilder();
sb.append("{¥");
for (;;) {
Map.Entry<K,V> e = i.next();
K key = e.getKey();
V value = e.getValue();
sb.append(key == this ? "(this Map)" : key);
sb.append('=');
sb.append(value == this ? "(this Map)" : value);
if (!i.hasNext())
return sb.append('}').toString();
sb.append(',').append(' ');
}
} public Spliterator<Map.Entry<K, V>> spliterator() {//Entry分割器
return new EntrySpliterator<K, V>(TreeMap1.this, null, null, 0, -1, 0);
}
}
//KeySet里面有NavigableMap,KeySet比Values和EntrySet要复杂。KeySet里面有m,Values和EntrySet里面没有m。m可以是TreeMap1也可以是TreeMap1的子Map。
//Values和EntrySet就要调用TreeMap1.this对象和外部类TreeMap1的方法。KeySet直接调用m的方法。
static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {// KeySet是静态的
private final NavigableMap<E, ?> m;// NavigableMap是接口,对TreeMap的封装。 KeySet(NavigableMap<E, ?> map) {
m = map;
} public Iterator<E> iterator() {//使用KeyIterator。Set里面的遍历使用的是Iterator。从前往后遍历Key。
if (m instanceof TreeMap1)
return ((TreeMap1<E, ?>) m).keyIterator();
else
return ((NavigableSubMap<E, ?>) m).keyIterator();
} public Iterator<E> descendingIterator() {//使用DescendingKeyIterator。Set里面的遍历使用的是Iterator。从后往前遍历Key。
if (m instanceof TreeMap1)
return ((TreeMap1<E, ?>) m).descendingKeyIterator();
else
return ((NavigableSubMap<E, ?>) m).descendingKeyIterator();
} public int size() {
return m.size();
} public boolean isEmpty() {
return m.isEmpty();
} public boolean contains(Object o) {
return m.containsKey(o);
} public void clear() {
m.clear();
} public E lower(E e) {
return m.lowerKey(e);
} public E floor(E e) {
return m.floorKey(e);
} public E ceiling(E e) {
return m.ceilingKey(e);
} public E higher(E e) {
return m.higherKey(e);
} public E first() {
return m.firstKey();
} public E last() {
return m.lastKey();
} public Comparator<? super E> comparator() {
return m.comparator();
} public E pollFirst() {
Map.Entry<E, ?> e = m.pollFirstEntry();
return (e == null) ? null : e.getKey();
} public E pollLast() {
Map.Entry<E, ?> e = m.pollLastEntry();
return (e == null) ? null : e.getKey();
} public boolean remove(Object o) {
int oldSize = size();
m.remove(o);
return size() != oldSize;
}
//子KeySet。subMap,headMap,tailMap在TreeMap和NavigableSubMap和AscendingSubMap和DescendingSubMap都有。
//TreeMap的subMap返回AscendingSubMap,NavigableSubMap的subMap继续调用子类的subMap。
//AscendingSubMap的subMap返回AscendingSubMap,DescendingSubMap的subMap返回DescendingSubMap。
public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
return new KeySet<>(m.subMap(fromElement, fromInclusive, toElement, toInclusive));
} public NavigableSet<E> headSet(E toElement, boolean inclusive) {
return new KeySet<>(m.headMap(toElement, inclusive));
} public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
return new KeySet<>(m.tailMap(fromElement, inclusive));
} public SortedSet<E> subSet(E fromElement, E toElement) {
return subSet(fromElement, true, toElement, false);
} public SortedSet<E> headSet(E toElement) {
return headSet(toElement, false);
} public SortedSet<E> tailSet(E fromElement) {
return tailSet(fromElement, true);
} public NavigableSet<E> descendingSet() {
return new KeySet<>(m.descendingMap());
} public Spliterator<E> spliterator() {//key分割器
return keySpliteratorFor(m);
}
} abstract class PrivateEntryIterator<T> implements Iterator<T> {//Iterator遍历器的基类
Entry<K, V> next;
Entry<K, V> lastReturned;
int expectedModCount; PrivateEntryIterator(Entry<K, V> first) {
expectedModCount = modCount;
lastReturned = null;
next = first;
} public boolean hasNext() {//final方法不能被重写
return next != null;
} final Entry<K, V> nextEntry() {//后面的Entry
Entry<K, V> e = next;
if (e == null)
throw new NoSuchElementException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
next = successor(e);
lastReturned = e;
return e;
} final Entry<K, V> prevEntry() {//前面的Entry
Entry<K, V> e = next;
if (e == null)
throw new NoSuchElementException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
next = predecessor(e);
lastReturned = e;
return e;
} public void remove() {
if (lastReturned == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
// deleted entries are replaced by their successors
if (lastReturned.left != null && lastReturned.right != null)
next = lastReturned;
deleteEntry(lastReturned);
expectedModCount = modCount;
lastReturned = null;
}
} final class EntryIterator extends PrivateEntryIterator<Map.Entry<K, V>> {//Entry遍历器Iterator
EntryIterator(Entry<K, V> first) {
super(first);
} public Map.Entry<K, V> next() {//后面的Entry
return nextEntry();
}
} final class ValueIterator extends PrivateEntryIterator<V> {//Value遍历器Iterator
ValueIterator(Entry<K, V> first) {
super(first);
}
int i=5;
// public final boolean hasNext() {
// return i-- > 0 ;//next != null;
// }
public V next() {//后面的value
return nextEntry().value; //(V) new Integer(888999);
}
} final class KeyIterator extends PrivateEntryIterator<K> {//Key遍历器Iterator
KeyIterator(Entry<K, V> first) {
super(first);
} public K next() {//后面的key
return nextEntry().key;
}
} final class DescendingKeyIterator extends PrivateEntryIterator<K> {
DescendingKeyIterator(Entry<K, V> first) {
super(first);
} public K next() {//前面的key
return prevEntry().key;
} public void remove() {
if (lastReturned == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
deleteEntry(lastReturned);
lastReturned = null;
expectedModCount = modCount;
}
} Iterator<K> keyIterator() {//从前往后遍历key
return new KeyIterator(getFirstEntry());
} Iterator<K> descendingKeyIterator() {//从后往前遍历key
return new DescendingKeyIterator(getLastEntry());
}
//---------------------------Set------Iterator---------------------------------------------------------
//---------------------------子Map也有keySet和EntrySet以及Entry和Key的迭代器和分割器,子Map还有subMap方法--------------
private static final Object UNBOUNDED = new Object();//边界 public NavigableSet<K> descendingKeySet() {
return descendingMap().navigableKeySet();//new KeySet<>(DescendingSubMap.this)
} public NavigableMap<K, V> descendingMap() {//降序子Map
NavigableMap<K, V> km = descendingMap;
return (km != null) ? km : (descendingMap = new DescendingSubMap<>(this, true, null, true, true, null, true));
}
//升序子Map:AscendingSubMap。范围是从fromKey 到 toKey;fromInclusive是是否包含fromKey的标记,toInclusive是是否包含toKey的标记
public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) {
return new AscendingSubMap<>(this, false, fromKey, fromInclusive, false, toKey, toInclusive);
}
// 范围从第一个节点 到 toKey, inclusive是是否包含toKey的标记
public NavigableMap<K, V> headMap(K toKey, boolean inclusive) {
return new AscendingSubMap<>(this, true, null, true, false, toKey, inclusive);
}
// 范围是从 fromKey 到 最后一个节点,inclusive是是否包含fromKey的标记
public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) {
return new AscendingSubMap<>(this, false, fromKey, inclusive, true, null, true);
}
// 范围是从fromKey(包括) 到 toKey(不包括)
public SortedMap<K, V> subMap(K fromKey, K toKey) {
return subMap(fromKey, true, toKey, false);
}
// 范围从第一个节点 到 toKey(不包括)
public SortedMap<K, V> headMap(K toKey) {
return headMap(toKey, false);
}
// 范围是从 fromKey(包括) 到 最后一个节点
public SortedMap<K, V> tailMap(K fromKey) {
return tailMap(fromKey, true);
} //NavigableSubMap里面有TreeMap1这个m。m只能是TreeMap1不是TreeMap1的子Map。KeySet里面也有m,这个m可以是TreeMap1也可以是TreeMap1的子Map
abstract static class NavigableSubMap<K, V> extends AbstractMap1<K, V> implements NavigableMap<K, V>, Serializable {
private static final long serialVersionUID = -2102997345730753016L;
final TreeMap1<K, V> m;
// fromStart=true从map第一个位置开始. toEnd=true就一直到map的最后。 fromStart为true,lo,loInclusive就失效。toEnd为true,hi,hiInclusive就失效。
final boolean fromStart, toEnd;
final K lo, hi;
final boolean loInclusive, hiInclusive;//loInclusive=true就包括lo,hiInclusive=true就包括hi。 NavigableSubMap(TreeMap1<K, V> m, boolean fromStart, K lo, boolean loInclusive, boolean toEnd, K hi,boolean hiInclusive) {
if (!fromStart && !toEnd) {//fromStart=toEnd=fasle,lo和hi就不能为null
if (m.compare(lo, hi) > 0)
throw new IllegalArgumentException("fromKey > toKey");
} else {
if (!fromStart) // fromStart=fasle,就要有lo不能为null
m.compare(lo, lo);
if (!toEnd)//toEnd=fasle,就要有hi不能为null
m.compare(hi, hi);
} this.m = m;
this.fromStart = fromStart;
this.lo = lo;
this.loInclusive = loInclusive;
this.toEnd = toEnd;
this.hi = hi;
this.hiInclusive = hiInclusive;
} //fromStart为true或者toEnd为true就不会超一边的标。
final boolean tooLow(Object key) {//太小
if (!fromStart) {
int c = m.compare(key, lo);//key<lo就超标,key=lo但是不包括lo就超标。
if (c < 0 || (c == 0 && !loInclusive))
return true;
}
return false;
} final boolean tooHigh(Object key) {//太大
if (!toEnd) {
int c = m.compare(key, hi);//key>hi就超标,key=hi但是不包括hi就超标。
if (c > 0 || (c == 0 && !hiInclusive))
return true;
}
return false;
} final boolean inRange(Object key) {//key是否超标。等于两边端点时候考虑loInclusive和hiInclusive。
return !tooLow(key) && !tooHigh(key);
} //fromStart为true或者toEnd为true就不会超一边的标。
final boolean inClosedRange(Object key) {//等于2边端点不超标。
return (fromStart || m.compare(key, lo) >= 0) && (toEnd || m.compare(hi, key) >= 0);
} final boolean inRange(Object key, boolean inclusive) {//inclusive为true,等于两边端点时候考虑loInclusive和hiInclusive。
//inclusive为false,等于2边端点时候不超标。
return inclusive ? inRange(key) : inClosedRange(key);
} final TreeMap1.Entry<K, V> absLowest() {//真正最小元素
TreeMap1.Entry<K, V> e = (fromStart ? m.getFirstEntry()//从开头开始就是第一个元素
//不从开头开始。 包括lo,找lo最近的大,可以等于lo。不包括lo,找lo最近的大,不可以等于lo。
: (loInclusive ? m.getCeilingEntry(lo) : m.getHigherEntry(lo)));
return (e == null || tooHigh(e.key)) ? null : e;
} final TreeMap1.Entry<K, V> absHighest() {//真正最大元素
TreeMap1.Entry<K, V> e = (toEnd ? m.getLastEntry()
//hi最近的小,可以相等, hi最近的小,不可以相等
: (hiInclusive ? m.getFloorEntry(hi) : m.getLowerEntry(hi)));
return (e == null || tooLow(e.key)) ? null : e;
} final TreeMap1.Entry<K, V> absCeiling(K key) {// key最近的大,可以相等
if (tooLow(key))
return absLowest();
TreeMap1.Entry<K, V> e = m.getCeilingEntry(key);// key最近的大,可以相等
return (e == null || tooHigh(e.key)) ? null : e;
} final TreeMap1.Entry<K, V> absHigher(K key) {// key最近的大,不可以相等
if (tooLow(key))
return absLowest();
TreeMap1.Entry<K, V> e = m.getHigherEntry(key);
return (e == null || tooHigh(e.key)) ? null : e;
} final TreeMap1.Entry<K, V> absFloor(K key) {// 最近的小,可以相等
if (tooHigh(key))
return absHighest();
TreeMap1.Entry<K, V> e = m.getFloorEntry(key);// 最近的小,可以相等
return (e == null || tooLow(e.key)) ? null : e;
} final TreeMap1.Entry<K, V> absLower(K key) {// 最近的小,不可以相等。
if (tooHigh(key))
return absHighest();
TreeMap1.Entry<K, V> e = m.getLowerEntry(key);// 最近的小,不可以相等。
return (e == null || tooLow(e.key)) ? null : e;
} final TreeMap1.Entry<K, V> absHighFence() {//最高界限
//hi最近的大,不可以相等。 hi最近的大,可以相等
return (toEnd ? null : (hiInclusive ? m.getHigherEntry(hi) : m.getCeilingEntry(hi)));
} final TreeMap1.Entry<K, V> absLowFence() {//遍历时候最低界限
//lo最近的小,不能相等。 lo最近的小,可以相等。
return (fromStart ? null : (loInclusive ? m.getLowerEntry(lo) : m.getFloorEntry(lo)));
} abstract TreeMap1.Entry<K, V> subLowest(); abstract TreeMap1.Entry<K, V> subHighest(); abstract TreeMap1.Entry<K, V> subCeiling(K key); abstract TreeMap1.Entry<K, V> subHigher(K key); abstract TreeMap1.Entry<K, V> subFloor(K key); abstract TreeMap1.Entry<K, V> subLower(K key); abstract Iterator<K> keyIterator();//升序迭代器 abstract Spliterator<K> keySpliterator(); abstract Iterator<K> descendingKeyIterator();//递减迭代器 public boolean isEmpty() {
return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
} public int size() {
return (fromStart && toEnd) ? m.size() : entrySet().size();
} public final boolean containsKey(Object key) {
return inRange(key) && m.containsKey(key);
} public final V put(K key, V value) {
if (!inRange(key))
throw new IllegalArgumentException("key out of range");
return m.put(key, value);
} public final V get(Object key) {
return !inRange(key) ? null : m.get(key);
} public final V remove(Object key) {
return !inRange(key) ? null : m.remove(key);
} public final Entry<K, V> ceilingEntry(K key) {
return exportEntry(subCeiling(key));
} public final K ceilingKey(K key) {
return keyOrNull(subCeiling(key));
} public final Entry<K, V> higherEntry(K key) {
return exportEntry(subHigher(key));
} public final K higherKey(K key) {
return keyOrNull(subHigher(key));
} public final Entry<K, V> floorEntry(K key) {
return exportEntry(subFloor(key));
} public final K floorKey(K key) {
return keyOrNull(subFloor(key));
} public final Entry<K, V> lowerEntry(K key) {
return exportEntry(subLower(key));
} public final K lowerKey(K key) {
return keyOrNull(subLower(key));
} public final K firstKey() {
return key(subLowest());
} public final K lastKey() {
return key(subHighest());
} public final Entry<K, V> firstEntry() {
return exportEntry(subLowest());
} public final Entry<K, V> lastEntry() {
return exportEntry(subHighest());
} public final Entry<K, V> pollFirstEntry() {
TreeMap1.Entry<K, V> e = subLowest();
Entry<K, V> result = exportEntry(e);
if (e != null)
m.deleteEntry(e);
return result;
} public final Entry<K, V> pollLastEntry() {
TreeMap1.Entry<K, V> e = subHighest();
Entry<K, V> result = exportEntry(e);
if (e != null)
m.deleteEntry(e);
return result;
} public final NavigableSet<K> navigableKeySet() {
KeySet<K> nksv = navigableKeySetView;
return (nksv != null) ? nksv : (navigableKeySetView = new KeySet<>(this));
} public final Set<K> keySet() {
return navigableKeySet();
} public NavigableSet<K> descendingKeySet() {
return descendingMap().navigableKeySet();
} public final SortedMap<K, V> subMap(K fromKey, K toKey) {
return subMap(fromKey, true, toKey, false);
} public final SortedMap<K, V> headMap(K toKey) {
return headMap(toKey, false);
} public final SortedMap<K, V> tailMap(K fromKey) {
return tailMap(fromKey, true);
} // Views
transient NavigableMap<K, V> descendingMapView;//接口NavigableMap
transient EntrySetView entrySetView;//内部类EntrySetView
transient KeySet<K> navigableKeySetView;//外部KeySet // 子Map的Entry集合的操作,
abstract class EntrySetView extends AbstractSet<Entry<K, V>> {
private transient int size = -1, sizeModCount; public int size() {
if (fromStart && toEnd)//从开始到结束
return m.size();
if (size == -1 || sizeModCount != m.modCount) {
sizeModCount = m.modCount;
size = 0;
Iterator<?> i = iterator();
while (i.hasNext()) {
size++;
i.next();
}
}
return size;
} public boolean isEmpty() {
TreeMap1.Entry<K, V> n = absLowest();//外部类NavigableSubMap的方法。内部类直接使用外部类的方法。
return n == null || tooHigh(n.key);
} public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Entry<?, ?> entry = (Entry<?, ?>) o;
Object key = entry.getKey();
if (!inRange(key))
return false;
TreeMap1.Entry<?, ?> node = m.getEntry(key);
return node != null && valEquals(node.getValue(), entry.getValue());
} public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Entry<?, ?> entry = (Entry<?, ?>) o;
Object key = entry.getKey();
if (!inRange(key))
return false;
TreeMap1.Entry<K, V> node = m.getEntry(key);
if (node != null && valEquals(node.getValue(), entry.getValue())) {
m.deleteEntry(node);
return true;
}
return false;
}
} // 子Map迭代器公共类
abstract class SubMapIterator<T> implements Iterator<T> {
TreeMap1.Entry<K, V> lastReturned;
TreeMap1.Entry<K, V> next;
final Object fenceKey;
int expectedModCount;
//开始和结束位置
SubMapIterator(TreeMap1.Entry<K, V> first, TreeMap1.Entry<K, V> fence) {
expectedModCount = m.modCount;
lastReturned = null;
next = first;
fenceKey = fence == null ? UNBOUNDED : fence.key;
} public final boolean hasNext() {
return next != null && next.key != fenceKey;//栅栏
} final TreeMap1.Entry<K, V> nextEntry() {//后面一个元素
TreeMap1.Entry<K, V> e = next;
if (e == null || e.key == fenceKey)
throw new NoSuchElementException();
if (m.modCount != expectedModCount)
throw new ConcurrentModificationException();
next = successor(e);
lastReturned = e;
return e;
} final TreeMap1.Entry<K, V> prevEntry() {//前面一个元素
TreeMap1.Entry<K, V> e = next;
if (e == null || e.key == fenceKey)
throw new NoSuchElementException();
if (m.modCount != expectedModCount)
throw new ConcurrentModificationException();
next = predecessor(e);
lastReturned = e;
return e;
} final void removeAscending() {//升序删除
if (lastReturned == null)
throw new IllegalStateException();
if (m.modCount != expectedModCount)
throw new ConcurrentModificationException();
// deleted entries are replaced by their successors
if (lastReturned.left != null && lastReturned.right != null)
next = lastReturned;
m.deleteEntry(lastReturned);
lastReturned = null;
expectedModCount = m.modCount;
} final void removeDescending() {//降序删除
if (lastReturned == null)
throw new IllegalStateException();
if (m.modCount != expectedModCount)
throw new ConcurrentModificationException();
m.deleteEntry(lastReturned);
lastReturned = null;
expectedModCount = m.modCount;
} }
// 子Map升序Entry迭代器
final class SubMapEntryIterator extends SubMapIterator<Entry<K, V>> {
SubMapEntryIterator(TreeMap1.Entry<K, V> first, TreeMap1.Entry<K, V> fence) {
super(first, fence);
} public Entry<K, V> next() {//后面一个元素
return nextEntry();
} public void remove() {//升序删除
removeAscending();
}
}
// 子Map降序Entry迭代器
final class DescendingSubMapEntryIterator extends SubMapIterator<Entry<K, V>> {
DescendingSubMapEntryIterator(TreeMap1.Entry<K, V> last, TreeMap1.Entry<K, V> fence) {
super(last, fence);
} public Entry<K, V> next() {//前面一个元素
return prevEntry();
} public void remove() {//降序删除
removeDescending();
}
}
// 子Map升序Key迭代器和分割器
final class SubMapKeyIterator extends SubMapIterator<K> implements Spliterator<K> {
SubMapKeyIterator(TreeMap1.Entry<K, V> first, TreeMap1.Entry<K, V> fence) {
super(first, fence);
} public K next() {//后一个key
return nextEntry().key;
} public void remove() {//升序删除
removeAscending();
}
//分割
public Spliterator<K> trySplit() {
return null;
} public void forEachRemaining(Consumer<? super K> action) {
while (hasNext())
action.accept(next());//遍历所有元素
} public boolean tryAdvance(Consumer<? super K> action) {
if (hasNext()) {
action.accept(next());//遍历所有元素
return true;
}
return false;
} public long estimateSize() {
return Long.MAX_VALUE;
} public int characteristics() {
return Spliterator.DISTINCT | Spliterator.ORDERED | Spliterator.SORTED;
} public final Comparator<? super K> getComparator() {
return NavigableSubMap.this.comparator();
}
}
// 子Map降序Key迭代器和分割器
final class DescendingSubMapKeyIterator extends SubMapIterator<K> implements Spliterator<K> {
DescendingSubMapKeyIterator(TreeMap1.Entry<K, V> last, TreeMap1.Entry<K, V> fence) {
super(last, fence);
} public K next() {//前一个key
return prevEntry().key;
} public void remove() {//降序删除
removeDescending();
}
//分割
public Spliterator<K> trySplit() {
return null;
} public void forEachRemaining(Consumer<? super K> action) {
while (hasNext())
action.accept(next());//遍历所有元素
} public boolean tryAdvance(Consumer<? super K> action) {
if (hasNext()) {
action.accept(next());//遍历所有元素
return true;
}
return false;
} public long estimateSize() {
return Long.MAX_VALUE;
} public int characteristics() {
return Spliterator.DISTINCT | Spliterator.ORDERED;
}
}
}
//上面是父类的内部类Iterator迭代器,这里是父类的升序子Map.
static final class AscendingSubMap<K, V> extends NavigableSubMap<K, V> {
private static final long serialVersionUID = 912986545866124060L; AscendingSubMap(TreeMap1<K, V> m, boolean fromStart, K lo, boolean loInclusive, boolean toEnd, K hi,boolean hiInclusive) {
super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
} public Comparator<? super K> comparator() {
return m.comparator();
} public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) {
if (!inRange(fromKey, fromInclusive))
throw new IllegalArgumentException("fromKey out of range");
if (!inRange(toKey, toInclusive))
throw new IllegalArgumentException("toKey out of range");
return new AscendingSubMap<>(m, false, fromKey, fromInclusive, false, toKey, toInclusive);
} public NavigableMap<K, V> headMap(K toKey, boolean inclusive) {//包括前面不包括后面
if (!inRange(toKey, inclusive))
throw new IllegalArgumentException("toKey out of range");
return new AscendingSubMap<>(m, fromStart, lo, loInclusive, false, toKey, inclusive);
} public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) {//包括后面不包括前面
if (!inRange(fromKey, inclusive))
throw new IllegalArgumentException("fromKey out of range");
return new AscendingSubMap<>(m, false, fromKey, inclusive, toEnd, hi, hiInclusive);
} public NavigableMap<K, V> descendingMap() {
NavigableMap<K, V> mv = descendingMapView;
return (mv != null) ? mv//降序子Map
: (descendingMapView = new DescendingSubMap<>(m, fromStart, lo, loInclusive, toEnd, hi,hiInclusive));
} Iterator<K> keyIterator() {//使用父类内部类SubMapKeyIterator迭代器
return new SubMapKeyIterator(absLowest(), absHighFence());
} Spliterator<K> keySpliterator() {//使用父类内部类SubMapKeyIterator迭代器
return new SubMapKeyIterator(absLowest(), absHighFence());
} Iterator<K> descendingKeyIterator() {//使用父类内部类DescendingSubMapKeyIterator迭代器
return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
} final class AscendingEntrySetView extends EntrySetView {
public Iterator<Entry<K, V>> iterator() {
return new SubMapEntryIterator(absLowest(), absHighFence());
}
} public Set<Entry<K, V>> entrySet() {
EntrySetView es = entrySetView;
return (es != null) ? es : (entrySetView = new AscendingEntrySetView());
} TreeMap1.Entry<K, V> subLowest() {
return absLowest();
} TreeMap1.Entry<K, V> subHighest() {
return absHighest();
} TreeMap1.Entry<K, V> subCeiling(K key) {
return absCeiling(key);
} TreeMap1.Entry<K, V> subHigher(K key) {
return absHigher(key);
} TreeMap1.Entry<K, V> subFloor(K key) {
return absFloor(key);
} TreeMap1.Entry<K, V> subLower(K key) {
return absLower(key);
}
}
//降序子Map
static final class DescendingSubMap<K, V> extends NavigableSubMap<K, V> {
private static final long serialVersionUID = 912986545866120460L; DescendingSubMap(TreeMap1<K, V> m, boolean fromStart, K lo, boolean loInclusive, boolean toEnd, K hi, boolean hiInclusive) {
super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
} private final Comparator<? super K> reverseComparator = Collections.reverseOrder(m.comparator); public Comparator<? super K> comparator() {
return reverseComparator;
} public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) {
if (!inRange(fromKey, fromInclusive))
throw new IllegalArgumentException("fromKey out of range");
if (!inRange(toKey, toInclusive))
throw new IllegalArgumentException("toKey out of range");
return new DescendingSubMap<>(m, false, toKey, toInclusive, false, fromKey, fromInclusive);
} public NavigableMap<K, V> headMap(K toKey, boolean inclusive) {
if (!inRange(toKey, inclusive))
throw new IllegalArgumentException("toKey out of range");
return new DescendingSubMap<>(m, false, toKey, inclusive, toEnd, hi, hiInclusive);
} public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) {
if (!inRange(fromKey, inclusive))
throw new IllegalArgumentException("fromKey out of range");
return new DescendingSubMap<>(m, fromStart, lo, loInclusive, false, fromKey, inclusive);
} public NavigableMap<K, V> descendingMap() {
NavigableMap<K, V> mv = descendingMapView;
return (mv != null) ? mv
: (descendingMapView = new AscendingSubMap<>(m, fromStart, lo, loInclusive, toEnd, hi,
hiInclusive));
} Iterator<K> keyIterator() {
return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
} Spliterator<K> keySpliterator() {
return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
} Iterator<K> descendingKeyIterator() {
return new SubMapKeyIterator(absLowest(), absHighFence());
} final class DescendingEntrySetView extends EntrySetView {
public Iterator<Entry<K, V>> iterator() {
return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
}
} public Set<Entry<K, V>> entrySet() {
EntrySetView es = entrySetView;
return (es != null) ? es : (entrySetView = new DescendingEntrySetView());
} TreeMap1.Entry<K, V> subLowest() {
return absHighest();
} TreeMap1.Entry<K, V> subHighest() {
return absLowest();
} TreeMap1.Entry<K, V> subCeiling(K key) {
return absFloor(key);
} TreeMap1.Entry<K, V> subHigher(K key) {
return absLower(key);
} TreeMap1.Entry<K, V> subFloor(K key) {
return absCeiling(key);
} TreeMap1.Entry<K, V> subLower(K key) {
return absHigher(key);
}
}
//---------------------------子Map-------------------------------------------------------
//---------------------------分割器-------------------------------------------------------
//DescendingSubMap的keySpliterator()返回DescendingSubMapKeyIterator
//AscendingSubMap的 keySpliterator()返回SubMapKeyIterator
//NavigableSubMap的abstract keySpliterator()
//TreeMap1的keySpliterator()返回KeySpliterator,TreeMap1的descendingKeySpliterator()返回DescendingKeySpliterator
public static <K> Spliterator<K> keySpliteratorFor(NavigableMap<K, ?> m) {//key分割器,keySet的分割器方法。
if (m instanceof TreeMap1) {
TreeMap1<K, Object> t = (TreeMap1<K, Object>) m;
return t.keySpliterator();//返回KeySpliterator
}
if (m instanceof DescendingSubMap) {
DescendingSubMap<K, ?> dm = (DescendingSubMap<K, ?>) m;
TreeMap1<K, ?> tm = dm.m;
if (dm == tm.descendingMap) {
TreeMap1<K, Object> t = (TreeMap1<K, Object>) tm;
return t.descendingKeySpliterator();//降序key分割器,DescendingKeySpliterator
}
}
//AscendingSubMap
NavigableSubMap<K, ?> sm = (NavigableSubMap<K, ?>) m;
return sm.keySpliterator();//返回SubMapKeyIterator
} public final Spliterator<K> keySpliterator() {//TreeMap1的方法,keySet的分割器方法。
return new KeySpliterator<K, V>(this, null, null, 0, -1, 0);
} public final Spliterator<K> descendingKeySpliterator() {//TreeMap1的方法
return new DescendingKeySpliterator<K, V>(this, null, null, 0, -2, 0);
} static class TreeMapSpliterator<K, V> {
final TreeMap1<K, V> tree;
Entry<K, V> current; // traverser; initially first node in range
Entry<K, V> fence; // one past last, or null
int side; // 0: top, -1: is a left split, +1: right
int est; // tree.size,尺寸估算(仅适用于顶层)
int expectedModCount; // for CME checks TreeMapSpliterator(TreeMap1<K, V> tree, Entry<K, V> origin, Entry<K, V> fence, int side, int est,int expectedModCount) {
this.tree = tree;
this.current = origin;
this.fence = fence;
this.side = side;
this.est = est;
this.expectedModCount = expectedModCount;
} final int getEstimate() { // 初始化:est=-1,current=第一个元素,est=size。est=-2,current=最后一个元素,est=size。
int s;
TreeMap1<K, V> t;
if ((s = est) < 0) {//est初始化是-1或者-2,大于0就说明已经初始化。
if ((t = tree) != null) {//est=-1,-1升序, -2降序。
current = (s == -1) ? t.getFirstEntry() : t.getLastEntry();
s = est = t.size;//然后est=size,
expectedModCount = t.modCount;
} else
s = est = 0;
}
return s;//返回TreeMap1.size
} public final long estimateSize() {
return (long) getEstimate();
}
} static final class KeySpliterator<K, V> extends TreeMapSpliterator<K, V> implements Spliterator<K> {
KeySpliterator(TreeMap1<K, V> tree, Entry<K, V> origin, Entry<K, V> fence, int side, int est,int expectedModCount) {
super(tree, origin, fence, side, est, expectedModCount);//this, null, null(开始结束null), 0, -1, 0
}
//trySplit()才会计算fence,forEachRemaining()不计算fence为null,一直到末尾。
public KeySpliterator<K, V> trySplit() {
if (est < 0)
getEstimate(); //没有初始化就初始化:current,est,expectedModCount
int d = side;
//计算s这个fence,截取出去之后current=fence,
Entry<K, V> e = current, f = fence, s = ((e == null || e == f) ? null : // current=null或者current=fence,s就是null。
(d == 0) ? tree.root : // side=0,s=root
(d > 0) ? e.right : // side>0,s=current.right
(d < 0 && f != null) ? f.left : // side<0,fence!= null,s=fence.left
null);// side<0,fence=null,s=null
if (s != null && s != e && s != f && tree.compare(e.key, s.key) < 0) { // e是开始位置,s是结束位置。
side = 1;//side=1留下来'根'的右边
return new KeySpliterator<>(tree, e, current = s, -1, est >>>= 1, expectedModCount);//side=-1出去的是‘根’的左边的。
}
return null;
}//每次分割以root作为边界,出去root左边的留下来root右边的。子Spliterator分割也是以他的root作为界限分割的。 public void forEachRemaining(Consumer<? super K> action) {
if (action == null)
throw new NullPointerException();
if (est < 0)
getEstimate(); // 没有调用trySplit()方法
Entry<K, V> f = fence, e, p, pl;
if ((e = current) != null && e != f) {//current!=fence
current = f; // 用完,再次调用forEachRemaining就不执行。
do {
action.accept(e.key);
//找后继
if ((p = e.right) != null) {
while ((pl = p.left) != null)
p = pl;
} else {
while ((p = e.parent) != null && e == p.right)//left关系退出
e = p;
}
} while ((e = p) != null && e != f);//等于栅栏退出
if (tree.modCount != expectedModCount)
throw new ConcurrentModificationException();
}
} public boolean tryAdvance(Consumer<? super K> action) {
Entry<K, V> e;
if (action == null)
throw new NullPointerException();
if (est < 0)
getEstimate();
if ((e = current) == null || e == fence)//current=null或者current=fence,
return false;
current = successor(e);//后继
action.accept(e.key);
if (tree.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
} public int characteristics() {
return (side == 0 ? Spliterator.SIZED : 0) | Spliterator.DISTINCT | Spliterator.SORTED
| Spliterator.ORDERED;
} public final Comparator<? super K> getComparator() {
return tree.comparator;
} } static final class DescendingKeySpliterator<K, V> extends TreeMapSpliterator<K, V> implements Spliterator<K> {
DescendingKeySpliterator(TreeMap1<K, V> tree, Entry<K, V> origin, Entry<K, V> fence, int side, int est,
int expectedModCount) {//this, null, null, 0, -2, 0
super(tree, origin, fence, side, est, expectedModCount);
} public DescendingKeySpliterator<K, V> trySplit() {
if (est < 0)
getEstimate(); // force initialization
int d = side;
Entry<K, V> e = current, f = fence, s = ((e == null || e == f) ? null : // empty
(d == 0) ? tree.root : // was top
(d < 0) ? e.left : // was left
(d > 0 && f != null) ? f.right : // was right
null);
if (s != null && s != e && s != f && tree.compare(e.key, s.key) > 0) { // e not already past s
side = 1;
return new DescendingKeySpliterator<>(tree, e, current = s, -1, est >>>= 1, expectedModCount);
}
return null;
} public void forEachRemaining(Consumer<? super K> action) {
if (action == null)
throw new NullPointerException();
if (est < 0)
getEstimate(); // force initialization
Entry<K, V> f = fence, e, p, pr;
if ((e = current) != null && e != f) {
current = f; // exhaust
do {
action.accept(e.key);
if ((p = e.left) != null) {
while ((pr = p.right) != null)
p = pr;
} else {
while ((p = e.parent) != null && e == p.left)
e = p;
}
} while ((e = p) != null && e != f);
if (tree.modCount != expectedModCount)
throw new ConcurrentModificationException();
}
} public boolean tryAdvance(Consumer<? super K> action) {
Entry<K, V> e;
if (action == null)
throw new NullPointerException();
if (est < 0)
getEstimate(); // force initialization
if ((e = current) == null || e == fence)
return false;
current = predecessor(e);
action.accept(e.key);
if (tree.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
} public int characteristics() {
return (side == 0 ? Spliterator.SIZED : 0) | Spliterator.DISTINCT | Spliterator.ORDERED;
}
} static final class ValueSpliterator<K, V> extends TreeMapSpliterator<K, V> implements Spliterator<V> {
ValueSpliterator(TreeMap1<K, V> tree, Entry<K, V> origin, Entry<K, V> fence, int side, int est,
int expectedModCount) {//this, null, null, 0, -1, 0
super(tree, origin, fence, side, est, expectedModCount);
} public ValueSpliterator<K, V> trySplit() {
if (est < 0)
getEstimate(); // force initialization
int d = side;
Entry<K, V> e = current, f = fence, s = ((e == null || e == f) ? null : // empty
(d == 0) ? tree.root : // was top
(d > 0) ? e.right : // was right
(d < 0 && f != null) ? f.left : // was left
null);
if (s != null && s != e && s != f && tree.compare(e.key, s.key) < 0) { // e not already past s
side = 1;
return new ValueSpliterator<>(tree, e, current = s, -1, est >>>= 1, expectedModCount);
}
return null;
} public void forEachRemaining(Consumer<? super V> action) {
if (action == null)
throw new NullPointerException();
if (est < 0)
getEstimate(); // force initialization
Entry<K, V> f = fence, e, p, pl;
if ((e = current) != null && e != f) {
current = f; // exhaust
do {
action.accept(e.value);
if ((p = e.right) != null) {
while ((pl = p.left) != null)
p = pl;
} else {
while ((p = e.parent) != null && e == p.right)
e = p;
}
} while ((e = p) != null && e != f);
if (tree.modCount != expectedModCount)
throw new ConcurrentModificationException();
}
} public boolean tryAdvance(Consumer<? super V> action) {
Entry<K, V> e;
if (action == null)
throw new NullPointerException();
if (est < 0)
getEstimate(); // force initialization
if ((e = current) == null || e == fence)
return false;
current = successor(e);
action.accept(e.value);
if (tree.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
} public int characteristics() {
return (side == 0 ? Spliterator.SIZED : 0) | Spliterator.ORDERED;
}
} static final class EntrySpliterator<K, V> extends TreeMapSpliterator<K, V> implements Spliterator<Map.Entry<K, V>> {
EntrySpliterator(TreeMap1<K, V> tree, Entry<K, V> origin, Entry<K, V> fence, int side, int est,
int expectedModCount) {
super(tree, origin, fence, side, est, expectedModCount);
} public EntrySpliterator<K, V> trySplit() {
if (est < 0)
getEstimate(); // force initialization
int d = side;
Entry<K, V> e = current, f = fence, s = ((e == null || e == f) ? null : // empty
(d == 0) ? tree.root : // was top
(d > 0) ? e.right : // was right
(d < 0 && f != null) ? f.left : // was left
null);
if (s != null && s != e && s != f && tree.compare(e.key, s.key) < 0) { // e not already past s
side = 1;
return new EntrySpliterator<>(tree, e, current = s, -1, est >>>= 1, expectedModCount);
}
return null;
} public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
if (action == null)
throw new NullPointerException();
if (est < 0)
getEstimate(); // force initialization
Entry<K, V> f = fence, e, p, pl;
if ((e = current) != null && e != f) {
current = f; // exhaust
do {
action.accept(e);
if ((p = e.right) != null) {
while ((pl = p.left) != null)
p = pl;
} else {
while ((p = e.parent) != null && e == p.right)
e = p;
}
} while ((e = p) != null && e != f);
if (tree.modCount != expectedModCount)
throw new ConcurrentModificationException();
}
} public boolean tryAdvance(Consumer<? super Map.Entry<K, V>> action) {
Entry<K, V> e;
if (action == null)
throw new NullPointerException();
if (est < 0)
getEstimate(); // force initialization
if ((e = current) == null || e == fence)
return false;
current = successor(e);
action.accept(e);
if (tree.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
} public int characteristics() {
return (side == 0 ? Spliterator.SIZED : 0) | Spliterator.DISTINCT | Spliterator.SORTED
| Spliterator.ORDERED;
} @Override
public Comparator<Map.Entry<K, V>> getComparator() {
// Adapt or create a key-based comparator
if (tree.comparator != null) {
return Map.Entry.comparingByKey(tree.comparator);
} else {
return (Comparator<Map.Entry<K, V>> & Serializable) (e1, e2) -> {
Comparable<? super K> k1 = (Comparable<? super K>) e1.getKey();
return k1.compareTo(e2.getKey());
};
}
}
}
//---------------------------分割器-------------------------------------------------------
}
package map;public abstract class AbstractMap1<K,V> implements Map<K,V> {
protected AbstractMap1() {
}
public int size() {
return entrySet().size();//entrySet()抽象方法
}
public boolean isEmpty() {
return size() == 0;
} public boolean containsValue(Object value) {
Iterator<Entry<K,V>> i = entrySet().iterator();//entrySet()抽象方法
if (value==null) {//containsValue value为null的。
while (i.hasNext()) {
Entry<K,V> e = i.next();
if (e.getValue()==null)
return true;
}
} else {
while (i.hasNext()) {
Entry<K,V> e = i.next();
if (value.equals(e.getValue()))
return true;
}
}
return false;
} public boolean containsKey(Object key) {
Iterator<Map.Entry<K,V>> i = entrySet().iterator();
if (key==null) {//containsKey key为null的。
while (i.hasNext()) {
Entry<K,V> e = i.next();
if (e.getKey()==null)
return true;
}
} else {
while (i.hasNext()) {
Entry<K,V> e = i.next();
if (key.equals(e.getKey()))
return true;
}
}
return false;
} public V get(Object key) {
Iterator<Entry<K,V>> i = entrySet().iterator();
if (key==null) {//get key为null的。
while (i.hasNext()) {
Entry<K,V> e = i.next();
if (e.getKey()==null)
return e.getValue();
}
} else {
while (i.hasNext()) {
Entry<K,V> e = i.next();
if (key.equals(e.getKey()))
return e.getValue();
}
}
return null;
} public V put(K key, V value) {//子类实现
throw new UnsupportedOperationException();
} public V remove(Object key) {
Iterator<Entry<K,V>> i = entrySet().iterator();
Entry<K,V> correctEntry = null;
if (key==null) {//remove key为null的。
while (correctEntry==null && i.hasNext()) {
Entry<K,V> e = i.next();
if (e.getKey()==null)
correctEntry = e;
}
} else {
while (correctEntry==null && i.hasNext()) {
Entry<K,V> e = i.next();
if (key.equals(e.getKey()))
correctEntry = e;
}
} V oldValue = null;
if (correctEntry !=null) {
oldValue = correctEntry.getValue();
i.remove();
}
return oldValue;
} public void putAll(Map<? extends K, ? extends V> m) {
Set<?> s = m.entrySet();
for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
put(e.getKey(), e.getValue());//TreeMap调用过来的,这里调用TreeMap的put方法,不调用本类的put方法。
} public void clear() {
entrySet().clear();
}
public abstract Set<Entry<K,V>> entrySet();//Entry的集合
public transient Set<K> keySet;
public transient Collection<V> values; public Set<K> keySet() {
Set<K> ks = keySet;
if (ks == null) {
ks = new AbstractSet<K>() {//集合的值是根据iterator()返回的Iterator对象的hasNext和next方法确定的。
public Iterator<K> iterator() {
return new Iterator<K>() {
private Iterator<Entry<K,V>> i = entrySet().iterator(); public boolean hasNext() {
return i.hasNext();
} public K next() {
return i.next().getKey();
} public void remove() {
i.remove();
}
};
} public int size() {//大小方法
return AbstractMap1.this.size();
} public boolean isEmpty() {
return AbstractMap1.this.isEmpty();
} public void clear() {
AbstractMap1.this.clear();
} public boolean contains(Object k) {//包含方法
return AbstractMap1.this.containsKey(k);
}
};
keySet = ks;
}
return ks;
} public Collection<V> values() {
Collection<V> vals = values;
if (vals == null) {//初始化values
vals = new AbstractCollection<V>() {//集合的值是根据iterator()返回的Iterator对象的hasNext和next方法确定的。
public Iterator<V> iterator() {
return new Iterator<V>() {
private Iterator<Entry<K,V>> i = entrySet().iterator(); public boolean hasNext() {
return i.hasNext();
} public V next() {
return i.next().getValue();
} public void remove() {
i.remove();
}
};
} public int size() {
return AbstractMap1.this.size();
} public boolean isEmpty() {
return AbstractMap1.this.isEmpty();
} public void clear() {
AbstractMap1.this.clear();
} public boolean contains(Object v) {
return AbstractMap1.this.containsValue(v);
}
};
values = vals;
}
return vals;
} public boolean equals(Object o) {//2个map中每个元素是不是都相等
if (o == this)
return true;
if (!(o instanceof Map))
return false;
Map<?,?> m = (Map<?,?>) o;
if (m.size() != size())
return false;
try {
Iterator<Entry<K,V>> i = entrySet().iterator();//entrySet()返回EntrySet,iterator()返回EntryIterator。集合里面有遍历器。
while (i.hasNext()) {//hasNext是父类HashIterator的方法
Entry<K,V> e = i.next();//hasNext是父类HashIterator的方法
K key = e.getKey();
V value = e.getValue();
if (value == null) {
if (!(m.get(key)==null && m.containsKey(key))) //m没有key
return false;
} else {
if (!value.equals(m.get(key))) //value不为null,就看value是否相等。
return false;
}
}
} catch (ClassCastException unused) {
return false;
} catch (NullPointerException unused) {
return false;
}
return true;
} public int hashCode() {
int h = 0;
Iterator<Entry<K,V>> i = entrySet().iterator();
while (i.hasNext())
h += i.next().hashCode();
return h;
} public String toString() {
Iterator<Entry<K,V>> i = entrySet().iterator();//entrySet()返回EntrySet,iterator()返回EntryIterator。集合里面有遍历器。
if (! i.hasNext())
return "{}";
StringBuilder sb = new StringBuilder();
sb.append("{¥");
for (;;) {
Entry<K,V> e = i.next();
K key = e.getKey();
V value = e.getValue();
sb.append(key == this ? "(this Map)" : key);
sb.append('=');
sb.append(value == this ? "(this Map)" : value);
if (!i.hasNext())
return sb.append('}').toString();
sb.append(',').append(' ');
}
} protected Object clone() throws CloneNotSupportedException {
AbstractMap1<?,?> result = (AbstractMap1<?,?>)super.clone();//native方法
result.keySet = null;
result.values = null;
return result;
} private static boolean eq(Object o1, Object o2) {
return o1 == null ? o2 == null : o1.equals(o2);
} public static class SimpleEntry<K,V> implements Entry<K,V>, java.io.Serializable{//对外接口
private static final long serialVersionUID = -8499721149061103585L;
private final K key;
private V value; public SimpleEntry(K key, V value) {
this.key = key;
this.value = value;
}
public SimpleEntry(Entry<? extends K, ? extends V> entry) {
this.key = entry.getKey();
this.value = entry.getValue();
}
public K getKey() {
return key;
}
public V getValue() {
return value;
}
public V setValue(V value) {
V oldValue = this.value;
this.value = value;
return oldValue;
}
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
return eq(key, e.getKey()) && eq(value, e.getValue());
}
public int hashCode() {
return (key == null ? 0 : key.hashCode()) ^
(value == null ? 0 : value.hashCode());
}
public String toString() {
return key + "=#" + value;
}
} public static class SimpleImmutableEntry<K,V> implements Entry<K,V>, java.io.Serializable{//Entry的封装
private static final long serialVersionUID = 7138329143949025153L;
private final K key;
private final V value; public SimpleImmutableEntry(K key, V value) {
this.key = key;
this.value = value;
}
public SimpleImmutableEntry(Entry<? extends K, ? extends V> entry) {
this.key = entry.getKey();
this.value = entry.getValue();
}
public K getKey() {
return key;
}
public V getValue() {
return value;
}
public V setValue(V value) {
throw new UnsupportedOperationException();
}
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
return eq(key, e.getKey()) && eq(value, e.getValue());
}
public int hashCode() {
return (key == null ? 0 : key.hashCode()) ^
(value == null ? 0 : value.hashCode());
}
public String toString() {
return key + "=*" + value;
}
}
}

TreeMap源码分析2的更多相关文章

  1. Java集合之TreeMap源码分析

    一.概述 TreeMap是基于红黑树实现的.由于TreeMap实现了java.util.sortMap接口,集合中的映射关系是具有一定顺序的,该映射根据其键的自然顺序进行排序或者根据创建映射时提供的C ...

  2. HashMap与TreeMap源码分析

    1. 引言     在红黑树--算法导论(15)中学习了红黑树的原理.本来打算自己来试着实现一下,然而在看了JDK(1.8.0)TreeMap的源码后恍然发现原来它就是利用红黑树实现的(很惭愧学了Ja ...

  3. TreeMap 源码分析

    简介 TreeMap最早出现在JDK 1.2中,是 Java 集合框架中比较重要一个的实现.TreeMap 底层基于红黑树实现,可保证在log(n)时间复杂度内完成 containsKey.get.p ...

  4. TreeMap源码分析,看了都说好

    概述 TreeMap也是Map接口的实现类,它最大的特点是迭代有序,默认是按照key值升序迭代(当然也可以设置成降序).在前面的文章中讲过LinkedHashMap也是迭代有序的,不过是按插入顺序或访 ...

  5. 死磕 java集合之TreeMap源码分析(四)-内含彩蛋

    欢迎关注我的公众号"彤哥读源码",查看更多源码系列文章, 与彤哥一起畅游源码的海洋. 二叉树的遍历 我们知道二叉查找树的遍历有前序遍历.中序遍历.后序遍历. (1)前序遍历,先遍历 ...

  6. 死磕 java集合之TreeMap源码分析(三)- 内含红黑树分析全过程

    欢迎关注我的公众号"彤哥读源码",查看更多源码系列文章, 与彤哥一起畅游源码的海洋. 删除元素 删除元素本身比较简单,就是采用二叉树的删除规则. (1)如果删除的位置有两个叶子节点 ...

  7. 死磕 java集合之TreeMap源码分析(二)- 内含红黑树分析全过程

    欢迎关注我的公众号"彤哥读源码",查看更多源码系列文章, 与彤哥一起畅游源码的海洋. 插入元素 插入元素,如果元素在树中存在,则替换value:如果元素不存在,则插入到对应的位置, ...

  8. 死磕 java集合之TreeMap源码分析(一)- 内含红黑树分析全过程

    欢迎关注我的公众号"彤哥读源码",查看更多源码系列文章, 与彤哥一起畅游源码的海洋. 简介 TreeMap使用红黑树存储元素,可以保证元素按key值的大小进行遍历. 继承体系 Tr ...

  9. TreeMap源码分析

    MapClassDiagram

  10. java.util.TreeMap源码分析

    TreeMap的实现基于红黑树,排列的顺序根据key的大小,或者在创建时提供的比较器,取决于使用哪个构造器. 对于,containsKey,get,put,remove操作,保证时间复杂度为log(n ...

随机推荐

  1. 我是如何一步步编码完成万仓网ERP系统的(二)前端框架

    https://www.cnblogs.com/smh188/p/11533668.html(我是如何一步步编码完成万仓网ERP系统的(一)系统架构) https://www.cnblogs.com/ ...

  2. File类---Day28

    概述 java.io.File 类是文件和目录路径名的抽象表示,主要用于文件和目录的创建.查找和删除等操作. 构造方法 1.public File(String pathname) :通过将给定的路径 ...

  3. Python基础14

    P73. 内嵌函数的讲解介绍 内部函数,书中讲的应用较简单,后面找篇具体的文章学习下

  4. 隐马尔科夫模型(Hidden Markov Models) 系列之一

    转自:http://blog.csdn.net/eaglex/article/details/6376826 介绍(introduction) 通常我们总是对寻找某一段时间上的模式感兴趣,这些模式可能 ...

  5. 英语pyrophane火欧珀pyrophane单词

    pyrophane火欧泊产量稀少,以至于大多数采到宝石的矿主不愿意将它进行切割,即便随形的切割技巧比刻面需要更多的经验也要将其加工成随形,因为这种琢型最能保重.但是与黑欧泊为了保证火彩只能切割成蛋面和 ...

  6. CentOS7升级内核kernel5.0

    升级过程: 原系统:CentOS7.3 [root@my-e450 ~]# uname -r3.10.0-514.el7.x86_64 安装必需的软件包: # yum update# yum inst ...

  7. Bash Shell如何实现动态变量

    有时需要遍历所有变量,但是如何生成变量名之后,再取到变量名里的值呢? 具体方法 测试动态变量的脚本: #!/bin/bash a=1 b=abc abc1='12345abc' tmp1=$(eval ...

  8. python将Excel文件内容导入Mysql数据

    为了方便起见,将所有字段类型设置为str,理解mysql的语法这个玩意贼简单 # _*_ coding:utf-8 _*_import pandas as pd #先装个pandas ,pip ins ...

  9. matplot 绘制定制饼图

    1.普通风格 代码 import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = 'SimHei' # 使图形中的中文正常编码显示 ...

  10. JS高阶---简介+数据类型

    首先看下大概流程 [一]基础 接下来看下数据类型分类和判断 (1)数据类型分类 基本类型/值类型5种 ---字符串String.数字Number.布尔值Boolean.未定义undefined.空nu ...