[bzoj4345][POI2016]Korale_堆_贪心_线段树_dfs
bzoj4345 POI2016 Korale
题目链接:https://lydsy.com/JudgeOnline/problem.php?id=4345
数据范围:略。
题解:
由于$k$的范围问题,我们很容易想到优先队列。
至于从每个状态怎么往下一个转移就是这个题的精髓。
我们先考虑第一问:
第一问没有字典序的限制,我们把所有的数按照从小到大排序。
堆里维护二元组$(Sum, id)$表示这种选取方式的和位$Sum$,最大下标为$id$。
它可以转移到$(Sum - a_{id} + a_{id+1}, id+1)$和$(Sum + a_{id + 1}, id + 1)$。
这一想是显然的,但是不咋好想...有点超级钢琴的味道。
下面我们考虑第二问:
第二问我们爆搜即可,想求出来当前下标(不排序)到最后一个数这个区间内,小于当前剩余和的最小下标的数是啥,然后暴力搜下去即可。
这个过程可以用线段树维护。
至于复杂度为什么是对的?因为我们每时每刻都保证了所有的枚举和都是小于第一问的值的,即使枚举到了第一问的值也在接受范围内。
言外之意我们枚举的每一个值,都是前$k-1$中的一个。
代码:
#include <bits/stdc++.h> #define ls p << 1 #define rs p << 1 | 1 #define N 1000010 using namespace std; typedef long long ll; char *p1, *p2, buf[100000]; #define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ ) int rd() {
int x = 0;
char c = nc();
while (c < 48) {
c = nc();
}
while (c > 47) {
x = (((x << 2) + x) << 1) + (c ^ 48), c = nc();
}
return x;
} priority_queue <pair<ll, int> > q; int a[N], b[N], Same, mn[N << 2]; ll ans[N]; inline void pushup(int p) {
mn[p] = min(mn[ls], mn[rs]);
} void build(int l, int r, int p) {
if (l == r) {
mn[p] = b[l];
return;
}
int mid = (l + r) >> 1;
build(l, mid, ls), build(mid + 1, r, rs);
pushup(p);
} int query(int x, ll y, int l, int r, int p) {
if (x <= l) {
if (mn[p] > y) {
return 0;
}
if (l == r) {
return l;
}
}
int mid = (l + r) >> 1;
if (x <= mid) {
int mdl = query(x, y, l, mid, ls);
if (mdl) {
return mdl;
}
}
return query(x, y, mid + 1, r, rs);
} int top, st[N], n, k; void dfs(int p, ll re) {
if (!Same) {
return;
}
if (!re) {
Same -- ;
if (!Same) {
for (int i = 1; i <= top; i ++ ) {
printf("%d ", st[i]);
}
puts("");
}
return;
}
for (int i = p + 1; i <= n; i ++ ) {
i = query(i, re, 1, n, 1);
if (i) {
st[ ++ top] = i;
dfs(i, re - b[i]);
top -- ;
}
else {
break;
}
}
} int main() {
n = rd(), k = rd() - 1;
for (int i = 1; i <= n; i ++ ) {
a[i] = b[i] = rd();
}
sort(a + 1, a + n + 1);
q.push(make_pair(-a[1], 1));
for (int i = 1; i <= k; i ++ ) {
ans[i] = -q.top().first;
int x = q.top().second;
q.pop();
if (x < n) {
q.push(make_pair(-(ans[i] - a[x] + a[x + 1]), x + 1));
q.push(make_pair(-(ans[i] + a[x + 1]), x + 1));
}
}
// for (int i = 1; i <= k; i ++ ) {
// printf("%lld ", ans[i]);
// }
// puts("");
cout << ans[k] << endl ;
for (int i = k; i; i -- ) {
if (ans[i] != ans[k]) {
break;
}
Same ++ ;
}
// cout << Same << endl ;
build(1, n, 1);
dfs(0, ans[k]);
return 0;
}
[bzoj4345][POI2016]Korale_堆_贪心_线段树_dfs的更多相关文章
- BZOJ_2161_布娃娃_权值线段树
BZOJ_2161_布娃娃_权值线段树 Description 小时候的雨荨非常听话,是父母眼中的好孩子.在学校是老师的左右手,同学的好榜样.后来她成为艾利斯顿第二 代考神,这和小时候培养的良好素质是 ...
- BZOJ_3685_普通van Emde Boas树_权值线段树
BZOJ_3685_普通van Emde Boas树_权值线段树 Description 设计数据结构支持: 1 x 若x不存在,插入x 2 x 若x存在,删除x 3 输出当前最小值,若不存 ...
- B20J_2733_[HNOI2012]永无乡_权值线段树合并
B20J_2733_[HNOI2012]永无乡_权值线段树合并 Description:n座岛,编号从1到n,每座岛都有自己的独一无二的重要度,按照重要度可以将这n座岛排名,名次用1到 n来表示.某些 ...
- BZOJ_1503_[NOI2004]郁闷的出纳员_权值线段树
BZOJ_1503_[NOI2004]郁闷的出纳员_权值线段树 Description OIER公司是一家大型专业化软件公司,有着数以万计的员工.作为一名出纳员,我的任务之一便是统计每位员工的 工资. ...
- BZOJ_1012_[JSOI2008]_最大数maxnumber_(线段树/树状数组+RMQ)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1012 两种操作: 1.求序列末尾n个数中的最大值. 2.在序列末尾插入一个数. 分析 线段树求 ...
- [bzoj2733][HNOI2012]永无乡_权值线段树_线段树合并
永无乡 bzoj-2733 HNOI-2012 题目大意:题目链接. 注释:略. 想法: 它的查询操作非常友善,就是一个联通块内的$k$小值. 故此我们可以考虑每个联通块建一棵权值线段树. 这样的话每 ...
- [jdoj1258]野生动物园(change by panxf)_权值线段树_组合数
人品计算 题目大意:n个数的a序列,m组询问.每次询问给出T,A,B,K.求在a序列的[A,B]的位置之内的K小值P,的$C_{T}^{P \% T} \% 10111$. 注释:每组询问保证区间只相 ...
- 3065: 带插入区间K小值_树套树_替罪羊树_权值线段树
经过周六一天,周一3个小时的晚自习,周二2个小时的疯狂debug,终于凭借自己切掉了这道树套树题. Code: #include <cstdio> #include <algorit ...
- 【Luogu1973】仓配置(贪心,线段树)
[Luogu1973]仓配置 题面 直接找洛谷把... 题解 很明显的贪心吧 按照线段的右端点为第一关键字,左端点第二关键字排序 然后线段树维护区间最小就可以啦 #include<iostrea ...
随机推荐
- Pytest权威教程24-Pytest导入机制及系统路径
目录 Pytest导入机制和sys.path/PYTHONPATH 包中的测试脚本及conftest.py文件 独立测试模块及conftest.py文件 调用通过python -m pytest调用p ...
- SQL语句简单增删改查
常用数据类型 Int:整数,长度没有作用 Varchar:字符串,varchar(3)表示最多存放3个字符,1个中文或英文或符合都占1个字符 Decimal:小数,decimal(5,2)表示共存5位 ...
- golang配置镜像站点
In Linux or macOS, you can execute the below commands. Bash / # Enable the go modules feature export ...
- macos下如何解决无法写ntfs格式的u盘或硬盘?
答:macos原生支持,可以通过脚本卸载再重新挂载为可读写即可,脚本在此
- net.ipv4.tcp_fin_timeout的错误理解
按照文档的说法,貌似长久以来我对于tcp_fin_timeout的理解都是错误的 先备份在这里,再验证 提高Linux应对短连接的负载能力 在存在大量短连接的情况下,Linux的TCP栈一般都 ...
- iptables规则保存
/etc/init.d/iptables save #查看 vim /etc/sysconfig/iptables #将iptables设置为开机启动 chkconfig iptables on #查 ...
- 绕过WAF、安全狗知识整理
0x01 前言 目前市场上的WAF主要有以下几类 1. 以安全狗为代表的基于软件WAF 2. 百度加速乐.安全宝等部署在云端的WAF 3. 硬件WAF WAF的检测主要有三个阶段,我画了一张图进行说明 ...
- Python中__new__和__init__的区别与联系
__new__ 负责对象的创建而 __init__ 负责对象的初始化. __new__:创建对象时调用,会返回当前对象的一个实例 __init__:创建完对象后调用,对当前对象的一些实例初始化,无返回 ...
- 【转载】 linux dig 命令使用方法
原文地址: https://www.imooc.com/article/26971?block_id=tuijian_wz 作者:ibeautiful来源:慕课网 ------------------ ...
- 【转载】 DeepMind发表Nature子刊新论文:连接多巴胺与元强化学习的新方法
原文地址: baijiahao.baidu.com/s?id=1600509777750939986&wfr=spider&for=pc 机器之心 18-05-15 14:26 - ...