[LeetCode] 72. 编辑距离 ☆☆☆☆☆(动态规划)
https://leetcode-cn.com/problems/edit-distance/solution/bian-ji-ju-chi-mian-shi-ti-xiang-jie-by-labuladong/ (思路很好,有图很好理解)
描述
给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
示例 1:
输入: word1 = "horse", word2 = "ros"
输出: 3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
示例 2:
输入: word1 = "intention", word2 = "execution"
输出: 5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')
解析
编辑距离可以用来比较二者的相似度。编辑距离越小,说明越相似。
编辑距离问题就是给我们两个字符串 s1 和 s2,只能用三种操作,让我们把 s1 变成 s2,求最少的操作数。需要明确的是,不管是把 s1 变成 s2 还是反过来,结果都是一样的。
解决两个字符串的动态规划问题,一般都是用两个指针 i,j
分别指向两个字符串的最后,然后一步步往前走,缩小问题的规模。
定义数组的含义
由于我们的目的求将 word1 转换成 word2 所使用的最少操作数 。那我们就定义 dp[i] [j]的含义为:当字符串 word1 的长度为 i,字符串 word2 的长度为 j 时,将 word1 转化为 word2 所使用的最少操作次数为 dp[i] [j]。
找出关系数组元素间的关系式
接下来我们就要找 dp[i] [j] 元素之间的关系了,比起其他题,这道题相对比较难找一点,但是,不管多难找,大部分情况下,dp[i] [j] 和 dp[i-1] [j]、dp[i] [j-1]、dp[i-1] [j-1] 肯定存在某种关系。因为我们的目标就是,从规模小的,通过一些操作,推导出规模大的。对于这道题,我们可以对 word1 进行三种操作
插入一个字符
删除一个字符
替换一个字符
由于我们是要让操作的次数最小,所以我们要寻找最佳操作。那么有如下关系式:
一、如果我们 word1[i] 与 word2 [j] 相等,这个时候不需要进行任何操作,显然有 dp[i] [j] = dp[i-1] [j-1]。(别忘了 dp[i] [j] 的含义哈)。
二、如果我们 word1[i] 与 word2 [j] 不相等,这个时候我们就必须进行调整,而调整的操作有 3 种,我们要选择一种。三种操作对应的关系试如下(注意字符串与字符的区别):
(1)、如果把字符 word1[i] 替换成与 word2[j] 相等,则有 dp[i] [j] = dp[i-1] [j-1] + 1;
(2)、如果在字符串 word1末尾插入一个与 word2[j] 相等的字符,则有 dp[i] [j] = dp[i] [j-1] + 1;
(3)、如果把字符 word1[i] 删除,则有 dp[i] [j] = dp[i-1] [j] + 1;
(可以用第一个链接来帮助理解)
那么我们应该选择一种操作,使得 dp[i] [j] 的值最小,显然有
dp[i] [j] = min(dp[i-1] [j-1],dp[i] [j-1],dp[[i-1] [j]]) + 1;
于是,我们的关系式就推出来了。
初始值
当 dp[i] [j] 中,如果 i 或者 j 有一个为 0,那么还能使用关系式吗?答是不能的,因为这个时候把 i - 1 或者 j - 1,就变成负数了,数组就会出问题了,所以我们的初始值是计算出所有的 dp[0] [0….n] 和所有的 dp[0….m] [0]。这个还是非常容易计算的,因为当有一个字符串的长度为 0 时,转化为另外一个字符串,那就只能一直进行插入或者删除操作了。
代码
public int minDistance(String word1, String word2) {
if (word1 == null || word1.length() <= 0) {
return word2.length();
} else if (word2 == null || word2.length() <= 0) {
return word1.length();
}
int length1 = word1.length();
int length2 = word2.length();
int[][] array = new int[length1 + 1][length2 + 1];// +1,是因为数组的length2位置有实际意义,表示length2位置的编辑距离
for (int i = 0; i <= length1; i++) {
array[i][0] = i;
}
for (int i = 0; i <= length2; i++) {
array[0][i] = i;
}
for (int ii = 1; ii <= length1; ii++) {
for (int kk = 1; kk <= length2; kk++) {
if (word1.charAt(ii - 1) == word2.charAt(kk - 1)) {
array[ii][kk] = array[ii - 1][kk - 1];
} else {
array[ii][kk] = Math.min(array[ii - 1][kk - 1], Math.min(array[ii][kk - 1], array[ii - 1][kk])) + 1;
}
}
}
return array[length1][length2];
}
优化:可以和[LeetCode] 62. 不同路径 ☆☆☆(动态规划)的思路一下去优化,因为每次计算只用到2行数据。
public int minDistance(String word1, String word2) {
int n1 = word1.length();
int n2 = word2.length();
int[] dp = new int[n2 + 1];
// dp[0...n2]的初始值
for (int j = 0; j <= n2; j++)
dp[j] = j;
// dp[j] = min(dp[j-1], pre, dp[j]) + 1
for (int i = 1; i <= n1; i++) {
int temp = dp[0]; // 相当于初始化
dp[0] = i;// 第 i 行第 0 列的初始值
for (int j = 1; j <= n2; j++) {
// pre 相当于之前的 dp[i-1][j-1]
int pre = temp;
temp = dp[j];// 在下一次temp被赋值给pre时,相当于dp[i-1][j-1]
// 如果 word1[i] 与 word2[j] 相等。第 i 个字符对应下标是 i-1
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[j] = pre;
} else {
dp[j] = Math.min(Math.min(dp[j - 1], pre), dp[j]) + 1;
}
}
}
return dp[n2];
}
[LeetCode] 72. 编辑距离 ☆☆☆☆☆(动态规划)的更多相关文章
- [leetcode] 72. 编辑距离(二维动态规划)
72. 编辑距离 再次验证leetcode的评判机有问题啊!同样的代码,第一次提交超时,第二次提交就通过了! 此题用动态规划解决. 这题一开始还真难到我了,琢磨半天没有思路.于是乎去了网上喵了下题解看 ...
- Java实现 LeetCode 72 编辑距离
72. 编辑距离 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字 ...
- [LeetCode]72. 编辑距离(DP)
题目 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字符 示例 1 ...
- [Leetcode 72]编辑距离 Edit Distance
[题目] Given two words word1 and word2, find the minimum number of operations required to convert word ...
- leetcode 72 编辑距离 JAVA
题目: 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字符 示例 ...
- 第30章 LeetCode 72 编辑距离
每日一句 A flower cannot blossom without sunshine, and man cannot live without love. 花没有阳光就不能盛开,人没有爱就不能生 ...
- leetcode 72. 编辑距离
/***** 定义状态: DP[i][j]其中i表示word1前i个字符,j表示Word2前i个字符 DP[i][j]表示单词1前i个字符匹配单词2前j个字符,最少变换次数: 状态转移: for i: ...
- leetcode 72.编辑距离(dp)
链接:https://leetcode-cn.com/problems/edit-distance/submissions/ 设dp[i][j]表示串s1前i个字符变换成串s2前j个字符所需要的最小操 ...
- Leetcode之动态规划(DP)专题-72. 编辑距离(Edit Distance)
Leetcode之动态规划(DP)专题-72. 编辑距离(Edit Distance) 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可 ...
随机推荐
- node 部署教程二
转:https://www.cnblogs.com/yesyes/p/7168449.html 这篇文章主要介绍如何在服务端跑vuejs的项目,如果上一篇教程你成功输出了hello world,那这一 ...
- ubuntu16上部署confluence-6.14.5的迁移
author:headsen chen date: 2019-10-18 15:02:06 notice :created by headsen chen himself and not al ...
- centos6.10环境安装nodejs8.2.1
操作系统为centos6.10,在安装nodejs最新版本的时候报错,依赖glibc的高版本和gcc高版本,还要安装python2.7,操作系统上已经跑了很多应用,升级gcc风险过大,采用相对保守的方 ...
- ISO/IEC 9899:2011 条款3——术语、定义与符号
3. 术语.定义与符号 1.对于此国际标准的意图,应用了以下定义.其它术语是在用斜体类型或一个语法规则左侧出现的地方定义.在本国际标准中所显式定义的术语不被假定为对其它地方所定义的类似术语的隐式引用. ...
- c++ stl bind函数介绍
/* stl::bind 使用 */ #include <iostream> #include <string> #include <functional> /* ...
- Android Studio打包没有Generate signed apk选项 解决方法
原文地址:https://www.jianshu.com/p/9e02e55f0ba8 1.点击build栏目-并没有Generate signed apk选项 2.点击file,选中如下图所示Syn ...
- 必备Docker命令
Dockerfile常用指令 Docker常用操作指令 Docker管理指令 文章来源:https://macrozheng.github.io/mall-learning/#/reference/d ...
- 【翻译】Flink Table Api & SQL — 用户定义函数
本文翻译自官网:User-defined Functions https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/tabl ...
- Centos7.3使用脚本自动静默安装oracle11.2.0.4数据库
一直想着写一个脚本实现自动化安装oracle数据库.以下内容实验过几次了,可能还存在些小问题,如果在跑以下脚本中遇到问题,自己仔细排查即可 挣扎了好久,总算还是没实现,目前只能通过依次执行多个脚本来安 ...
- Android Tcp操作
Tcp是基于传输层的面向连接的可靠通讯协议,其优点是基于连接,使得服务端和客户端可以实现双向通信,且实时性高,在需要服务端主动向客户端推送数据的应用场景中,使用TCP协议是一种很好的方式. 初学And ...