区间修改与区间查询问题

模板:

int ans;

struct node{
int l,r,v;
node(){v=;}
}tree[LEN*];
int arr[LEN];
//建树
void build(int l,int r,int i){ //记录 [ l , r ]上的值,当前索引为 i
tree[i].l=l;
tree[i].r=r;
if(l==r){ //如果访问到了叶子节点
tree[i].v=arr[l]; //当前值就是arr[l,r]的值
return;
}
int m=(l+r)/; //二分
build(l,m,LS(i)); //左子树
build(m+,r,RS(i)); //右子树
tree[i].v=tree[LS(i)].v+tree[RS(i)].v; //递归建树出栈后,前驱结点的值为后继结点的和
}
//区间查询
void query(int i,int l,int r){ // i 为当前树的索引,初试化调用为 1 。查询 [ l , r ]区间上的和
if(tree[i].l>=l && tree[i].r<=r){ //如果查询区间包裹住了当前结点区间
ans+=tree[i].v; //直接加上这个结点的值
return;
}
if(l<=tree[LS(i)].r) //查询的 l 比左子树的右端点小
query(LS(i),l,r); //向左递归
if(r>=tree[RS(i)].l) //查询的 r 比右子树的左端点大
query(RS(i),l,r); //向右递归
}
//单点修改
void plus_i(int i,int p,int d){ //index(current) position delta
tree[i].v+=d; //当前结点的值更新
if(tree[i].l==tree[i].r) //访问到了叶子节点
return; //退出
if(p<=tree[LS(i)].r) //查询的 p 比左子树的右端点小
plus_i(LS(i), p,d);
if(p>=tree[RS(i)].l) //查询的 p 比右子树的左端点大
plus_i(RS(i), p,d);
}
//区间修改
void plus_s(int i,int l,int r,int d){
//取查询区间与结点区间的交集
int tl=max(l,tree[i].l);
int tr=min(r,tree[i].r);
if(tl<=tr) tree[i].v+=d*(tr-tl+); //如果这个交集合法,区间加
else return;
if(l<=tree[LS(i)].r) //查询的 l 比左子树的右端点小
plus_s(LS(i), l,r,d);
if(r>=tree[RS(i)].l) //查询的 r 比右子树的左端点大
plus_s(RS(i), l,r,d);
}

注:可以把上文的结构体拆写为3个数组

测试OJ:P3372 【模板】线段树 1

测试代码:(因为无lazy优化,只有70分。我理解不了lazy优化)

#include <stdio.h>
#include <memory.h>
#include <math.h>
#include <string>
#include <vector>
#include <set>
#include <stack>
#include <queue>
#include <algorithm>
#include <map> #define I scanf
#define OL puts
#define O printf
#define F(a,b,c) for(a=b;a<c;a++)
#define FF(a,b) for(a=0;a<b;a++)
#define FG(a,b) for(a=b-1;a>=0;a--)
#define LEN 100010
#define MAX 1<<30
#define V vector<int>
#define ll long long
#define LS(i) i<<1
#define RS(i) i<<1|1 using namespace std; int ans; struct node{
int l,r,v;
node(){v=;}
}tree[LEN*];
int arr[LEN];
//建树
void build(int l,int r,int i){ //记录 [ l , r ]上的值,当前索引为 i
tree[i].l=l;
tree[i].r=r;
if(l==r){ //如果访问到了叶子节点
tree[i].v=arr[l]; //当前值就是arr[l,r]的值
return;
}
int m=(l+r)/; //二分
build(l,m,LS(i)); //左子树
build(m+,r,RS(i)); //右子树
tree[i].v=tree[LS(i)].v+tree[RS(i)].v; //递归建树出栈后,前驱结点的值为后继结点的和
}
//区间查询
void query(int i,int l,int r){ // i 为当前树的索引,初试化调用为 1 。查询 [ l , r ]区间上的和
if(tree[i].l>=l && tree[i].r<=r){ //如果查询区间包裹住了当前结点区间
ans+=tree[i].v; //直接加上这个结点的值
return;
}
if(l<=tree[LS(i)].r) //查询的 l 比左子树的右端点小
query(LS(i),l,r); //向左递归
if(r>=tree[RS(i)].l) //查询的 r 比右子树的左端点大
query(RS(i),l,r); //向右递归
}
//单点修改
void plus_i(int i,int p,int d){ //index(current) position delta
tree[i].v+=d; //当前结点的值更新
if(tree[i].l==tree[i].r) //访问到了叶子节点
return; //退出
if(p<=tree[LS(i)].r) //查询的 p 比左子树的右端点小
plus_i(LS(i), p,d);
if(p>=tree[RS(i)].l) //查询的 p 比右子树的左端点大
plus_i(RS(i), p,d);
}
//区间修改
void plus_s(int i,int l,int r,int d){
//取查询区间与结点区间的交集
int tl=max(l,tree[i].l);
int tr=min(r,tree[i].r);
if(tl<=tr) tree[i].v+=d*(tr-tl+); //如果这个交集合法,区间加
else return;
if(l<=tree[LS(i)].r) //查询的 l 比左子树的右端点小
plus_s(LS(i), l,r,d);
if(r>=tree[RS(i)].l) //查询的 r 比右子树的左端点大
plus_s(RS(i), l,r,d);
} int main(){
// freopen("D:\\CbWorkspace\\ACM数据结构\\线段树\\模板1.txt","r",stdin);
int N,M,i,t,op,x,y,k;
I("%d%d",&N,&M);
for(i=;i<=N;i++){
I("%d",&arr[i]);
}
build(,N,);
while(M--){
I("%d%d%d",&op,&x,&y);
switch(op){
case :
I("%d",&k);
plus_s(,x,y,k);
break;
case :
ans=;
query(,x,y);
O("%d\n",ans);
break;
}
}
return ;
}

区间最大最小值查询问题

OJ 链接:P1198 [JSOI2008]最大数

AC代码:

#include <stdio.h>
#include <memory.h>
#include <math.h>
#include <string>
#include <vector>
#include <set>
#include <stack>
#include <queue>
#include <algorithm>
#include <map> #define I scanf
#define OL puts
#define O printf
#define F(a,b,c) for(a=b;a<c;a++)
#define FF(a,b) for(a=0;a<b;a++)
#define FG(a,b) for(a=b-1;a>=0;a--)
#define LEN 400010
#define MAX 1<<30
#define V vector<int>
#define ll long long
#define LS(i) i<<1
#define RS(i) i<<1|1 using namespace std; int ans; struct node{
int l,r,v;
node(){v=;}
}tree[LEN*]; //建树
void build(int l,int r,int i){ //记录 [ l , r ]上的值,当前索引为 i
tree[i].l=l;
tree[i].r=r;
tree[i].v=-MAX;
if(l==r){ //如果访问到了叶子节点
return;
}
int m=(l+r)/; //二分
build(l,m,LS(i)); //左子树
build(m+,r,RS(i)); //右子树
}
//区间查询
void query(int i,int l,int r){ // i 为当前树的索引,初试化调用为 1 。查询 [ l , r ]区间上的和
if(tree[i].l>=l && tree[i].r<=r){ //如果查询区间包裹住了当前结点区间
ans=max(ans,tree[i].v); //取最大值
return;
}
if(l<=tree[LS(i)].r) //查询的 l 比左子树的右端点小
query(LS(i),l,r); //向左递归
if(r>=tree[RS(i)].l) //查询的 r 比右子树的左端点大
query(RS(i),l,r); //向右递归
}
//单点修改
void plus_i(int i,int p,int d){ //index(current) position delta
tree[i].v=max(tree[i].v,d); //取最大值
if(tree[i].l==tree[i].r) //访问到了叶子节点
return; //退出
if(p<=tree[LS(i)].r) //查询的 p 比左子树的右端点小
plus_i(LS(i), p,d);
if(p>=tree[RS(i)].l) //查询的 p 比右子树的左端点大
plus_i(RS(i), p,d);
} int main(){
// freopen("D:\\CbWorkspace\\ACM数据结构\\线段树\\最大数.txt","r",stdin);
int N,D,t=,num,pos=;
build(,LEN,);
char buf[];
I("%d%d",&N,&D);
while(N--){
I("%s%d",buf,&num);
if(buf[]=='A'){
num+=t;
num%=D;
plus_i(,pos++,num);
}else{
if(num==){
O("%d\n",t=);
continue;
}
ans=-MAX;
query(,pos-num,pos-);
O("%d\n",t=ans);
}
}
return ;
}

线段树模板(无lazy优化)的更多相关文章

  1. UESTC - 1057 秋实大哥与花 线段树模板题

    http://acm.uestc.edu.cn/#/problem/show/1057 题意:给你n个数,q次操作,每次在l,r上加上x并输出此区间的sum 题解:线段树模板, #define _CR ...

  2. POJ3468:A Simple Problem with Integers(线段树模板)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 149972 ...

  3. 洛谷P3372线段树模板1——线段树

    题目:https://www.luogu.org/problemnew/show/P3372 线段树模板. 代码如下: #include<iostream> #include<cst ...

  4. [AHOI 2009] 维护序列(线段树模板题)

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MB Description 老师交给小可可一个维护数列的任务,现在小 ...

  5. hdu1754 I hate it线段树模板 区间最值查询

    题目链接:这道题是线段树,树状数组最基础的问题 两种分类方式:按照更新对象和查询对象 单点更新,区间查询; 区间更新,单点查询; 按照整体维护的对象: 维护前缀和; 维护区间最值. 线段树模板代码 # ...

  6. P3373 线段树模板

    好,这是一个线段树模板. #include <cstdio> using namespace std; ; long long int sum[N],tag1[N],tag2[N],mo; ...

  7. 线段树模板hdu 1754:I Hate It

    I Hate It Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  8. POJ 3468 A Simple Problem with Integers(线段树模板之区间增减更新 区间求和查询)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 140120 ...

  9. 【BZOJ4311】向量(线段树分治,斜率优化)

    [BZOJ4311]向量(线段树分治,斜率优化) 题面 BZOJ 题解 先考虑对于给定的向量集,如何求解和当前向量的最大内积. 设当前向量\((x,y)\),有两个不同的向量\((u1,v1),(u2 ...

随机推荐

  1. [分布式学习]消息队列之rocketmq笔记

    文档地址 RocketMQ架构 哔哩哔哩上的视频 mq有很多,近期买了<分布式消息中间件实践>这本书,学习关于mq的相关知识.mq大致有有4个功能: 异步处理.比如业务端需要给用户发送邮件 ...

  2. 解决node fs.writeFile 生成csv 文件乱码问题

    解决node fs.writeFile 生成csv 文件乱码问题: fs.writeFile('xxx.csv', '\ufeff' + 要传入的数据, {encoding: 'utf8'}); \u ...

  3. SpringMVC_处理器方法的返回值

    一.返回ModelAndView    若处理器方法处理完后,需要跳转到其他资源,且又要在跳转的资源间传递数据,此时处理器方法返回ModelAndView比较好.当然,若要返回ModelAndView ...

  4. CodeForce 577B Modulo Sum

    You are given a sequence of numbers a1, a2, ..., an, and a number m. Check if it is possible to choo ...

  5. kafka中消费者消费消息之每个线程维护一个KafkaConsumer实例

    1.首先启动自己的kafka集群哟. 启动zk: bin/zkServer.sh start conf/zoo.cfg. 验证zk是否启动成功: bin/zkServer.sh status conf ...

  6. [基础] - 从xx语言是跨平台的说起

    我经常碰到一些人在说xx语言跨平台而yy语言不是(为避免不必要的纷争,在此不写具体语言但不影响阅读),从而来表明自己使用xx语言进行程序开发进而在编程语言鄙视链上高高在上很有优越感. 大概是从Java ...

  7. Python【day 14】sorted函数、filter函数和map函数的区别

    sorted函数.filter函数和map函数的区别1.作用 前者用于排序, 中者用于筛选, 后者用于返回值(不是特定的筛选或者排序)2.写法 前者 sorted(iterable,key=自定义函数 ...

  8. 深入理解Java对象

    深入理解Java对象(理清关系) 1.对象的创建过程: 所有创建过程如下所示: new 类名 根据new的参数在常量池中定位一个类的符号引用. 如果没有找到这个符号引用,说明类还没有被加载,则进行类的 ...

  9. 第九届极客大挑战——小帅的广告(二阶sql注入)

    也是经过一通扫描和测试,没发现其他有用信息,感觉这是个sql注入.其实对于二阶sql注入我以前没实践过,也没看过资料,只是知道这个名字,但不知道为何看到这道题就让我回想起了这个名词,所以查了一下二阶s ...

  10. WPF 枚举使用

    1.model class JX_Unit { public enum SumUnit { KW = 1, L = 2, Kt = 3, } } 2.viewModel public string w ...