Q-Q图和P-P图
一. QQ图
fig = plt.figure()
res = stats.probplot(train['SalePrice'], plot=plt)
plt.show()
scipy.stats 用法
# -*- coding: utf-8 -*-
from scipy import stats
from numpy import random
# Distributions
# 常用分布可参考本文档结尾处
# 分布可以使用的方法见下列清单
data=random.normal(size=1000)
stats.norm.rvs(loc=0,scale=1,size=10,random_state=None) # 生成随机数
stats.norm.pdf(-1.96,loc=0,scale=1) # 密度分布函数,画密度分布图时使用
stats.norm.cdf(-1.96,loc=0,scale=1) # 累计分布函数,-1.96对应2.5%
stats.norm.sf(-1.96,loc=0,scale=1) # 残存函数(=1-cdf),-1.96对应97.5%
stats.norm.ppf(0.025,loc=0,scale=1) # 累计分布函数反过来
stats.norm.isf(0.975,loc=0,scale=1) # 残存函数反过来
stats.norm.interval(0.95,loc=0,scale=1) # 置信度为95%的置信区间
stats.norm.moment(n=2,loc=0,scale=1) # n阶非中心距,n=2时是方差
stats.norm.median(loc=0,scale=1) # Median of the distribution.
stats.norm.mean(loc=0,scale=1) # Mean of the distribution.
stats.norm.var(loc=0,scale=1) # Variance of the distribution.
stats.norm.std(loc=0,scale=1) # Standard deviation of the distribution.
stats.norm.fit(data) # fit 估计潜在分布的参数
# Statistical functions
stats.describe([1,2,3]) # 返回多个统计量
stats.gmean([1,2,4]) # 几何平均数 n-th root of (x1 * x2 * ... * xn)
stats.hmean([2,2,2]) # 调和平均数 n / (1/x1 + 1/x2 + ... + 1/xn)
stats.trim_mean([1,2,3,5],0.25) # 砍头去尾均值,按比例砍
stats.sem(data) # Calculates the standard error of the mean
stats.mode([1,1,2]) # 众数
stats.skew(data) # 偏度
stats.kurtosis(data) # 峰度
stats.moment(data,moment=3) # n阶中心矩,3阶就是偏度,4阶就是峰度
stats.skewtest(data) # 检验偏度是否符合正态分布的偏度
stats.kurtosistest(data) # 检验峰度是否符合正态分布的峰度
stats.normaltest(data) # 检验是否符合正态分布
stats.variation([1,2,3]) # 变异系数(=std/mean*100%)
stats.find_repeats([1,1,2,2,3]) # 重复值查找
stats.itemfreq([1,1,2,2,3]) # 频次统计
stats.percentileofscore([1,2,3,4,5],2) # 返回数值的分位数
stats.scoreatpercentile([1,2,3,4,5],80,interpolation_method="lower") # 返回分位数对应的数值
stats.bayes_mvs(data) # 返回均值/方差/标准差的贝叶斯置信区间
stats.iqr([1,2,3,4,5],rng=(25,75)) # 计算 IQR
stats.zscore(data) # 计算 zscore
stats.f_oneway(data,data+data,data+data+data) # 单因素方差分析,参数是(样本组1,样本组2,样本组3)
stats.pearsonr(data,data+data) # 皮尔森相关系数
stats.spearmanr(data,data+data) # 斯皮尔曼秩相关系数
stats.kendalltau(data,data+data) # 肯德尔相关系数
stats.pointbiserialr([1,1,1,0,0,0],[1,2,3,4,5,6]) # 点二系列相关,第一个变量需要是二分类变量
stats.linregress(data,data+data) # 线性最小二乘回归
stats.ttest_1samp(data,popmean=0) # 单样本 t-检验: 检验总体平均数的值
stats.ttest_ind(data,data+data) # 双样本 t-检验: 检验不同总体的差异
stats.ttest_rel(data,data+data) # 配对样本 t-检验
stats.ttest_ind_from_stats(mean1=0,std1=1,nobs1=100,mean2=10,std2=1,nobs2=150,equal_var=True) # 根据统计量做 t-检验
stats.wilcoxon(data,data+data) # 一种非参数的配对样本检验。t-检验假定高斯误差。可以使用威尔科克森符号秩检验, 放松了这个假设
stats.kstest(data,'norm') # Kolmogorov–Smirnov检验: 检验单一样本是否服从某一预先假设的特定分布
stats.ks_2samp(data,data+data) # 检测两样本分布是否相同
stats.ranksums(data,data+data) # Wilcoxon rank-sum statistic 检测两样本分布是否相同
stats.chisquare(data,data) # 卡方检验,第一个参数是样本分布,第二个参数是期望分布
# Circular statistical functions
# 适用于环形数据,如时间(60分钟一圈),角度(360度一圈)
# 例如 0度 与 360度 的均值应该是 0度
stats.circmean([0,360],high=0,low=360) # 均值
stats.circvar([0,360],high=0,low=360) # 方差
stats.circstd([0,360],high=0,low=360) # 标准差
# Contingency table functions
# 列联表
stats.chi2_contingency([[10,10,20],[20,20,20]],lambda_="log-likelihood") # 卡方检验,n*m的列联表,每个格子样本数要大于5,lambda_默认皮尔森
stats.fisher_exact([[8,2],[1,5]],alternative="two-sided") # 费舍尔精确检验,2*2的列联表,alternative:two-sided,less,greater
stats.contingency.expected_freq([[10,10,20],[20,20,20]]) # 返回列联表的期望频次(各变量独立时的预期频次)
import numpy as np; stats.contingency.margins(np.array([[10,10,20],[20,20,20]]))# 返回列联表的行列和
# Plot-tests
# 图检验:probplot与Q-Q图的差异:P-P图是用分布的累计比,而Q-Q图用的是分布的分位数来做检验
import matplotlib.pyplot as plt
data=random.normal(loc=0,scale=1,size=500)
stats.probplot(data,dist=stats.norm,sparams=(0,1),plot=plt) # P-P图(probability plot),参数sparams传的是均值与标准差
stats.boxcox_normplot(abs(data),-3,3,plot=plt) # 不知干啥用,Compute parameters for a Box-Cox normality plot
stats.ppcc_plot(data,-3,3,dist=stats.norm,plot=plt) # 不知干啥用,Calculate and optionally plot probability plot correlation coefficient.
stats.ppcc_max(data,dist=stats.norm) # 不知干啥用,返回 PPCC 取最大时对应的位置
# Univariate and multivariate kernel density estimation
# 核密度估计用于估计未知的密度函数,属於非参数检验方法之一
stats.gaussian_kde([data,data+random.normal(size=500)]) # 不知干啥用,Representation of a kernel-density estimate using Gaussian kernels.
""" ---------------------------------------------------------------------------------------------------------
所有分布都是 rv_continuous(连续型分布) 与 rv_discrete(离散型分布) 的实例
rv_continuous([momtype, a, b, xtol, ...]) A generic continuous random variable class meant for subclassing.
rv_discrete([a, b, name, badvalue, ...]) A generic discrete random variable class meant for subclassing.
rv_histogram(histogram, *args, **kwargs) Generates a distribution given by a histogram.
Continuous distributions 连续型分布
alpha An alpha continuous random variable.
beta A beta continuous random variable.
chi2 A chi-squared continuous random variable.
f An F continuous random variable.
gamma A gamma continuous random variable.
lognorm A lognormal continuous random variable.
ncx2 A non-central chi-squared continuous random variable.
ncf A non-central F distribution continuous random variable.
nct A non-central Student’s T continuous random variable.
norm A normal continuous random variable.
pareto A Pareto continuous random variable.
t A Student’s T continuous random variable.
uniform A uniform continuous random variable.
wald A Wald continuous random variable.
……
Multivariate distributions 多元分布
multivariate_normal A multivariate normal random variable.
matrix_normal A matrix normal random variable.
multinomial A multinomial random variable.
random_correlation A random correlation matrix.
……
Discrete distributions 离散型分布
binom A binomial discrete random variable.
hypergeom A hypergeometric discrete random variable.
nbinom A negative binomial discrete random variable.
poisson A Poisson discrete random variable.
randint A uniform discrete random variable.
参考:
Q-Q图简介
学习-Python-数据分析&数据挖掘-4 SciPy.stats
Q-Q图和P-P图的更多相关文章
- c/c++ 图的创建及图的相关函数(链表法)
c/c++ 图的创建及图的相关函数(链表法) 图的概念 图由点和线组成 知道了图中有多少个点,和哪些点之间有线,就可以把一张图描绘出来 点之间的线,分有方向和无方向 创建图 创建图,实际就是创建出节点 ...
- ADT图及图的实现及图的应用
图: 图中涉及的定义: 有向图: 顶点之间的相关连接具有方向性: 无向图: 顶点之间相关连接没有方向性: 完全图: 若G是无向图,则顶点数n和边数e满足:0<=e<=n(n-1)/2,当e ...
- POJ3114 有些图缩点/改图/最短路
没想到手感还在~ 不须要又一次建图.仅仅要依据条件改改权值就可以. 还跑k次SPFA~ #include<cstdio> #include<iostream> #include ...
- KRPano资源分析工具使用说明(KRPano XML/JS解密 切片图批量下载 球面图还原 加密混淆JS还原美化)
软件交流群:571171251(软件免费版本在群内提供) krpano技术交流群:551278936(软件免费版本在群内提供) 最新博客地址:blog.turenlong.com 限时下载地址:htt ...
- matlab 将多个盒图放在一张图上
1.boxplot 将多个盒图放在一张图上 x1 = normrnd(5,1,100,1)';x2 = normrnd(6,1,200,1)';X = [x1 x2];G = [zeros(size( ...
- iOS启动图和开屏广告图,类似网易
iOS启动图和开屏广告图,类似网易 启动图是在iOS开发过程中必不可少的一个部分,很多app在启动图之后会有一张自定义的开屏广告图,点击该广告图可以跳转到广告图对应的页面.今天呢,和大家分享一下如何添 ...
- Shader中贴图知识汇总: 漫反射贴图、凹凸贴图、高光贴图、 AO贴图、环境贴图、 光照纹理及细节贴图
原文过于冗余,精读后做了部分简化与测试实践,原文地址:http://www.j2megame.com/html/xwzx/ty/2571.html http://www.cnblogs.com/z ...
- 功能模块图、业务流程图、处理流程图、ER图,数据库表图(概念模型和物理模型)画法
如果你能使用计算机规范画出以下几种图,那么恭喜你,你在我这里被封为学霸了,我膜拜ing-- 我作为前端开发与产品经理打交道已有5-6年时间,产品经理画的业务流程图我看过很多.于是百度搜+凭以往经验脑补 ...
- c语言实现灰度图转换为二值图
将上篇得到的灰度图转换为二值图,读取像素数据,低于某一值置0,否则设置为255,为得到更好的效果不同图片应采用不同的值 /* 2015年6月2日11:16:22 灰度图转换为二值图 blog:http ...
- PS-前端切图教程(切jpg图和切png图)
微微一运功,把家底都抖出来了. 不过,作为一个设计出身的前端来说,摸ps就和摸键盘一样了 所以可能教程中还是有没用过ps的人看不懂的地方, 欢迎加群讨论:613512106... ---------- ...
随机推荐
- sql server数据库备份单个表的结构和数据生成脚本【转】
1.使用场景:sql server数据库备份单个表的结构和数据,在我们要修改正式系统的数据的一天或者多条某些数据时候,要执行update语句操作,安全稳健考虑,最好先做好所修改的表的结构和数据备份! ...
- Python安装依赖包及开发工具转移到Visual Studio 2019
#pip升级pip install --upgrade pip#安装pillow图形库pip install pillow #安装二维码库 pip install MyQR PyCharm工具导入依赖 ...
- 安全漏洞XSS、CSRF、SQL注入以及DDOS攻击
随着互联网的普及,网络安全变得越来越重要,程序员需要掌握最基本的web安全防范,下面列举一些常见的安全漏洞和对应的防御措施. 0x01: XSS漏洞 1.XSS简介 跨站脚本(cross site s ...
- pandas.merge数据连接合并
https://study.163.com/course/courseMain.htm?courseId=1006383008&share=2&shareId=400000000398 ...
- H5+js调用相机
在机缘巧合之下,了解到用HTML5和javascript调用摄像头来实现拍照功能,今天就把大致原理写下来.页面布局很简单,就是一个input标签,两个HTML5元素video.canvas和一个but ...
- mac环境更新node版本
执行命令: 清除node的cache(清除node的缓存) sudo npm cache clean -f 安装"n"版本管理工具,管理node(没有错,就是n) sudo npm ...
- vue项目.eslintrc格式化
场景:.eslintrc非常的严谨,但是严格总是好的,能写出好的代码.如何格式化呢?写好的代码 如何一键 变成符合.eslintrc规范的代码呢??? 比如 双引号变单引号 去掉分号等等. 解决 ...
- Java之数组类型
如果我们有一组类型相同的变量.例如,5位同学的成绩,可以这么写 public class Main { public static void main(String[] args) { // 5位同学 ...
- [Go] 环境变量,模块化与基础语法
[环境变量] 安装完 go 之后,设置必要环境变量: export GOPATH=/home/wc/go-lab export GO111MODULE=on export GOPROXY=https: ...
- dockerfile的常用基础镜像——java镜像
1. java镜像使用Java镜像的最直接方法是把它作为基础镜像或运行时环境. 1.1 镜像tagjava:<version>如果你不确定你需要什么,那么请用这个tag.它可以作为一个运行 ...