There are N students in a class. Some of them are friends, while some are not. Their friendship is transitive in nature. For example, if A is a direct friend of B, and B is a direct friend of C, then A is an indirect friend of C. And we defined a friend circle is a group of students who are direct or indirect friends.

Given a N*N matrix M representing the friend relationship between students in the class. If M[i][j] = 1, then the ithand jth students are direct friends with each other, otherwise not. And you have to output the total number of friend circles among all the students.

Example 1:

Input:
[[1,1,0],
[1,1,0],
[0,0,1]]
Output: 2
Explanation:The 0th and 1st students are direct friends, so they are in a friend circle.
The 2nd student himself is in a friend circle. So return 2.

Example 2:

Input:
[[1,1,0],
[1,1,1],
[0,1,1]]
Output: 1
Explanation:The 0th and 1st students are direct friends, the 1st and 2nd students are direct friends,
so the 0th and 2nd students are indirect friends. All of them are in the same friend circle, so return 1.

Note:

  1. N is in range [1,200].
  2. M[i][i] = 1 for all students.
  3. If M[i][j] = 1, then M[j][i] = 1.

这道题让我们求朋友圈的个数,题目中对于朋友圈的定义是可以传递的,比如A和B是好友,B和C是好友,那么即使A和C不是好友,那么他们三人也属于一个朋友圈。那么比较直接的解法就是 DFS 搜索,对于某个人,遍历其好友,然后再遍历其好友的好友,那么就能把属于同一个朋友圈的人都遍历一遍,同时标记出已经遍历过的人,然后累积朋友圈的个数,再去对于没有遍历到的人在找其朋友圈的人,这样就能求出个数。其实这道题的本质是之前那道题 Number of Connected Components in an Undirected Graph,其实许多题目的本质都是一样的,就是看我们有没有一双慧眼能把它们识别出来:

解法一:

class Solution {
public:
int findCircleNum(vector<vector<int>>& M) {
int n = M.size(), res = ;
vector<bool> visited(n, false);
for (int i = ; i < n; ++i) {
if (visited[i]) continue;
helper(M, i, visited);
++res;
}
return res;
}
void helper(vector<vector<int>>& M, int k, vector<bool>& visited) {
visited[k] = true;
for (int i = ; i < M.size(); ++i) {
if (!M[k][i] || visited[i]) continue;
helper(M, i, visited);
}
}
};

我们也可以用 BFS 来遍历朋友圈中的所有人,解题思路和上面大同小异,参见代码如下:

解法二:

class Solution {
public:
int findCircleNum(vector<vector<int>>& M) {
int n = M.size(), res = ;
vector<bool> visited(n, false);
queue<int> q;
for (int i = ; i < n; ++i) {
if (visited[i]) continue;
q.push(i);
while (!q.empty()) {
int t = q.front(); q.pop();
visited[t] = true;
for (int j = ; j < n; ++j) {
if (!M[t][j] || visited[j]) continue;
q.push(j);
}
}
++res;
}
return res;
}
};

下面这种解法叫联合查找 Union Find,也是一种很经典的解题思路,在之前的两道道题 Graph Valid Tree 和 Number of Connected Components in an Undirected Graph 中也有过应用,核心思想是初始时给每一个对象都赋上不同的标签,然后对于属于同一类的对象,在 root 中查找其标签,如果不同,那么将其中一个对象的标签赋值给另一个对象,注意 root 数组中的数字跟数字的坐标是有很大关系的,root 存的是属于同一组的另一个对象的坐标,这样通过 getRoot 函数可以使同一个组的对象返回相同的值,参见代码如下:

解法三:

class Solution {
public:
int findCircleNum(vector<vector<int>>& M) {
int n = M.size(), res = n;
vector<int> root(n);
for (int i = ; i < n; ++i) root[i] = i;
for (int i = ; i < n; ++i) {
for (int j = i + ; j < n; ++j) {
if (M[i][j] == ) {
int p1 = getRoot(root, i);
int p2 = getRoot(root, j);
if (p1 != p2) {
--res;
root[p2] = p1;
}
}
}
}
return res;
}
int getRoot(vector<int>& root, int i) {
while (i != root[i]) {
root[i] = root[root[i]];
i = root[i];
}
return i;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/547

类似题目:

Accounts Merge

Redundant Connection II

Redundant Connection

Number of Islands II

Graph Valid Tree

Number of Connected Components in an Undirected Graph

Similar String Groups

参考资料:

https://leetcode.com/problems/friend-circles/

https://leetcode.com/problems/friend-circles/discuss/101440/c-bfs

https://leetcode.com/problems/friend-circles/discuss/101338/Neat-DFS-java-solution

https://leetcode.com/problems/friend-circles/discuss/101387/Easy-Java-Union-Find-Solution

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 547. Friend Circles 朋友圈的更多相关文章

  1. LeetCode 547. Friend Circles 朋友圈(C++/Java)

    题目: https://leetcode.com/problems/friend-circles/ There are N students in a class. Some of them are ...

  2. [LeetCode]547. Friend Circles朋友圈数量--不相邻子图问题

    /* 思路就是遍历所有人,对于每一个人,寻找他的好友,找到好友后再找这个好友的好友 ,这样深度优先遍历下去,设置一个flag记录是否已经遍历了这个人. 其实dfs真正有用的是flag这个变量,因为如果 ...

  3. 547 Friend Circles 朋友圈

    班上有 N 名学生.其中有些人是朋友,有些则不是.他们的友谊具有是传递性.如果已知 A 是 B 的朋友,B 是 C 的朋友,那么我们可以认为 A 也是 C 的朋友.所谓的朋友圈,是指所有朋友的集合.给 ...

  4. [LeetCode] Friend Circles 朋友圈

    There are N students in a class. Some of them are friends, while some are not. Their friendship is t ...

  5. Leetcode547: Friend Circles 朋友圈问题

    问题描述 在一个班级里有N个同学, 有些同学是朋友,有些不是.他们之间的友谊是可以传递的比如A和B是朋友,B和C是朋友,那么A和C也是朋友.我们定义 friend circle为由直接或者间接都是朋友 ...

  6. Leetcode之深度优先搜索(DFS)专题-547. 朋友圈(Friend Circles)

    Leetcode之深度优先搜索(DFS)专题-547. 朋友圈(Friend Circles) 深度优先搜索的解题详细介绍,点击 班上有 N 名学生.其中有些人是朋友,有些则不是.他们的友谊具有是传递 ...

  7. Java实现 LeetCode 547 朋友圈(并查集?)

    547. 朋友圈 班上有 N 名学生.其中有些人是朋友,有些则不是.他们的友谊具有是传递性.如果已知 A 是 B 的朋友,B 是 C 的朋友,那么我们可以认为 A 也是 C 的朋友.所谓的朋友圈,是指 ...

  8. [LeetCode]547. 朋友圈(DFS)

    题目 班上有 N 名学生.其中有些人是朋友,有些则不是.他们的友谊具有是传递性.如果已知 A 是 B 的朋友,B 是 C 的朋友,那么我们可以认为 A 也是 C 的朋友.所谓的朋友圈,是指所有朋友的集 ...

  9. LeetCode 547 朋友圈

    题目: 班上有 N 名学生.其中有些人是朋友,有些则不是.他们的友谊具有是传递性.如果已知 A 是 B 的朋友,B 是 C 的朋友,那么我们可以认为 A 也是 C 的朋友.所谓的朋友圈,是指所有朋友的 ...

随机推荐

  1. SpringMVC_处理器方法的返回值

    一.返回ModelAndView    若处理器方法处理完后,需要跳转到其他资源,且又要在跳转的资源间传递数据,此时处理器方法返回ModelAndView比较好.当然,若要返回ModelAndView ...

  2. Kafka学习笔记之Kafka High Availability(上)

    0x00 摘要 Kafka在0.8以前的版本中,并不提供High Availablity机制,一旦一个或多个Broker宕机,则宕机期间其上所有Partition都无法继续提供服务.若该Broker永 ...

  3. War 包部署

    Springboot 进行war包部署,以及踩坑历险!!! https://www.jianshu.com/p/4c2f27809571 Springboot2项目配置(热部署+war+外部tomca ...

  4. 一张图搞定 .NET Framework, .NET Core 和 .NET Standard 的区别

    最近开始研究.NET Core,有张图一看就能明白他们之前的关系. 上图己经能够说明.NET Framework和.NET Core其实是实现了 .NET Standard相关的东西,或者说Frame ...

  5. PIE调用Python获得彩色直方图

    前段时间我一直在研究PIE SDK与Python的结合,因为在我的开发中,我想获取一张图片的统计直方图,虽然在SDK中有提供关于直方图的类接口(如IStatsHistogram 接口.Histogra ...

  6. EF操作与Linq写法记录

    项目总结:EF操作与Linq写法记录 1.EF引入 新建一个MVC项目之后,要引用EF框架,可以按照以下步骤进行: 1),在Models中添加项目 2),选择Entity Data Model,并重新 ...

  7. Flask笔记:cookie

    在网站中,HTTP请求是无状态的:第一次请求成功后,第二次请求时服务器依然不知道这次请求的所属用户是谁.为了解决这个问题,在第一次请求成功后,服务器会生成并返回对应的cookie信息给浏览器,而浏览器 ...

  8. MySQL入门——在Windows下安装MySQL

    MySQL入门——在Windows下安装MySQL 摘要:本文主要说明了如何下Windows环境下安装MySQL. 查看电脑上是否安装了MySQL 打开cmd窗口,输入 services.msc 命令 ...

  9. Lucene搜索/索引过程笔记

    lucene索引文档过程: > 初始化IndexWriter > 构建Document > 调用IndexWriter.addDocument执行写入 > 初始化Documen ...

  10. docker操作命令大全和后台参数

    一.命令行 可以通过运行 docker ,或者 docker help 命令得到命令行的帮助信息(我们以 CentOS 为操作环境为例): [root@iz2ze2bn5x2wqxdeq65wlpz ...