莫烦TensorFlow_10 过拟合
import tensorflow as tf
from sklearn.datasets import load_digits
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelBinarizer #load data
digits = load_digits()
X = digits.data
y = digits.target
y = LabelBinarizer().fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3) #
# add layer
#
def add_layer(inputs, in_size, out_size, n_layer, activation_function = None):
layer_name = 'layer%s' % n_layer Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W') # hang lie
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name = 'b') Wx_plus_b = tf.matmul(inputs, Weights) + biases
Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob) # if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b) tf.summary.histogram(layer_name + '/outputs', outputs)
return outputs #
# define placeholder for inputs to network
#
keep_prob = tf.placeholder(tf.float32) #
xs = tf.placeholder(tf.float32, [None, 64]) # 8x8
ys = tf.placeholder(tf.float32, [None, 10]) #
# add output layer
#
l1 = add_layer(xs, 64, 50, 'l1', activation_function = tf.nn.tanh)
prediction = add_layer(l1, 50, 10, 'l2', activation_function = tf.nn.softmax) #
# the error between prediction and real data
#
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
reduction_indices=[1])) #loss
tf.summary.scalar('loss', cross_entropy)
train_step = tf.train.GradientDescentOptimizer(0.6).minimize(cross_entropy) sess = tf.Session()
merged = tf.summary.merge_all() #summary writer goes here
train_writer = tf.summary.FileWriter("logs/train", sess.graph)
test_writer = tf.summary.FileWriter("logs/test", sess.graph) sess.run(tf.global_variables_initializer()) for i in range(500):
#sess.run(train_step, feed_dict={xs:X_train, ys:y_train, keep_prob:1.0}) # overfitted
sess.run(train_step, feed_dict={xs:X_train, ys:y_train, keep_prob:0.5}) # keep 0.5, drop 0.5
if i% 50 == 0:
#record loss
train_result = sess.run(merged, feed_dict={xs:X_train, ys:y_train, keep_prob:1})
test_result = sess.run(merged, feed_dict={xs:X_test, ys:y_test, keep_prob:1})
train_writer.add_summary(train_result, i)
test_writer.add_summary(test_result, i)
莫烦TensorFlow_10 过拟合的更多相关文章
- tensorflow 莫烦教程
1,感谢莫烦 2,第一个实例:用tf拟合线性函数 import tensorflow as tf import numpy as np # create data x_data = np.random ...
- tensorflow学习笔记-bili莫烦
bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...
- 【莫烦Pytorch】【P1】人工神经网络VS. 生物神经网络
滴:转载引用请注明哦[握爪] https://www.cnblogs.com/zyrb/p/9700343.html 莫烦教程是一个免费的机器学习(不限于)的学习教程,幽默风俗的语言让我们这些刚刚起步 ...
- 稍稍乱入的CNN,本文依然是学习周莫烦视频的笔记。
稍稍乱入的CNN,本文依然是学习周莫烦视频的笔记. 还有 google 在 udacity 上的 CNN 教程. CNN(Convolutional Neural Networks) 卷积神经网络简单 ...
- 莫烦大大TensorFlow学习笔记(9)----可视化
一.Matplotlib[结果可视化] #import os #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf i ...
- scikit-learn学习笔记-bili莫烦
bilibili莫烦scikit-learn视频学习笔记 1.使用KNN对iris数据分类 from sklearn import datasets from sklearn.model_select ...
- 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)
莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...
- 莫烦pytorch学习笔记(七)——Optimizer优化器
各种优化器的比较 莫烦的对各种优化通俗理解的视频 import torch import torch.utils.data as Data import torch.nn.functional as ...
- 莫烦PyTorch学习笔记(五)——模型的存取
import torch from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed() ...
随机推荐
- NOIP 2011 计算系数
洛谷 P1313 计算系数 洛谷传送门 JDOJ 1747: [NOIP2011]计算系数 D2 T1 JDOJ传送门 Description 给定一个多项式(ax + by)k,请求出多项式展开后x ...
- Python入门基础学习记录(二)汇率案例学习记录
一.汇总整理 1.操作 ①新建python文件 工程右键--new--python file 2.注意问题与知识点 >变量定义:直接写变量名即可,例如定义一个字符串并赋值123: rmb_str ...
- springboot2.0 management.security.enabled无效
在1.5.x版本中通过management.security.enabled=false来暴露所有端点 在使用springcloud的时候,如果基于springboot2的版本的配置中心,无法使用SV ...
- Chrome保存整个网页为图片
打开需要保存为图片的网页 然后按F12,接着按Ctrl+Shift+P 在红框内输入full 点击下面的“Capture full size screenshot”就可以保存整个网页为图片了 原文出处 ...
- 自动化API之一 自动生成Mysql数据库的微服务API
本文演示如何利用Uniconnector平台,自动生成Mysql数据库的API,节约开发人员编写后台API的时间.使用生成API的前提是开发者有 自己的数据库,有数据库的管理权限,并能通过外网 ...
- 尽解powershell的workflow
尽解powershell的workflow -------1[简介]--------- Microsoft .NET Framework 4.0 发布于2010年4月左右..net4 的新特性,是并行 ...
- jQuery 源码解析(八) 异步队列模块 Callbacks 回调函数详解
异步队列用于实现异步任务和回调函数的解耦,为ajax模块.队列模块.ready事件提供基础功能,包含三个部分:Query.Callbacks(flags).jQuery.Deferred(funct) ...
- 【01】Nginx:编译安装/动态添加模块
写在前面的话 说起 Nginx,别说运维,就是很多开发人员也很熟悉,毕竟如今已经 2019 年了,Apache 更多的要么成为了历史,要么成为了历史残留. 我们在提及 Nginx 的时候,一直在强调他 ...
- .net基础加强
1.冒泡排序 请通过冒泡排序法对整数数组{ 1, 3, 5, 7, 90, 2, 4, 6, 8, 10 }实现升序排序 , , , , , , , , , }; BubbleSort(num); C ...
- Python基础22
数据类型可变不可变,说的是“指向”. 深浅拷贝.