【深度学习】关于Adam
从SGD(SGD指mini-batch gradient descent)和Adam两个方面说起。
更详细的可以看:深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)(醍醐灌顶!)
SGD
SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了。即:
其中,是学习率,是梯度 SGD完全依赖于当前batch的梯度,所以可理解为允许当前batch的梯度多大程度影响参数更新。
缺点:(正因为有这些缺点才让这么多大神发展出了后续的各种算法)
- 选择合适的learning rate比较困难 - 对所有的参数更新使用同样的learning rate。对于稀疏数据或者特征,有时我们可能想更新快一些对于不经常出现的特征,对于常出现的特征更新慢一些,这时候SGD就不太能满足要求了
- SGD容易收敛到局部最优,并且在某些情况下可能被困在鞍点【原来写的是“容易困于鞍点”,经查阅论文发现,其实在合适的初始化和step size的情况下,鞍点的影响并没这么大。感谢@冰橙的指正】
- 参数取值震荡严重。(我自己添加的)
Adam
Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。公式如下:
特点:
- 结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点
- 对内存需求较小
- 为不同的参数计算不同的自适应学习率
- 也适用于大多非凸优化 - 适用于大数据集和高维空间
一个框架看懂优化算法之异同 SGD/AdaGrad/Adam
优化算法的一般框架:
后续复习的时候,存在了一个疑问,上述方法说对解决稀疏数据十分有效,那么哪里体现出了对稀疏数据有效呢?
参数更新越频繁,二阶动量越大,学习率就越小。
这篇也不错,之后复习看:
【深度学习】关于Adam的更多相关文章
- 深度学习——优化器算法Optimizer详解(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)
在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论 ...
- 【深度学习】深入理解优化器Optimizer算法(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)
在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论 ...
- 深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)(转)
转自: https://zhuanlan.zhihu.com/p/22252270 ycszen 另可参考: https://blog.csdn.net/llx1990rl/article/de ...
- 深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)
深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 ...
- 深度学习常见的优化方法(Optimizer)总结:Adam,SGD,Momentum,AdaGard等
机器学习的常见优化方法在最近的学习中经常遇到,但是还是不够精通.将自己的学习记录下来,以备不时之需 基础知识: 机器学习几乎所有的算法都要利用损失函数 lossfunction 来检验算法模型的优劣, ...
- 深度学习面试题03:改进版梯度下降法Adagrad、RMSprop、Momentum、Adam
目录 Adagrad法 RMSprop法 Momentum法 Adam法 参考资料 发展历史 标准梯度下降法的缺陷 如果学习率选的不恰当会出现以上情况 因此有一些自动调学习率的方法.一般来说,随着迭代 ...
- 从 SGD 到 Adam —— 深度学习优化算法概览(一) 重点
https://zhuanlan.zhihu.com/p/32626442 骆梁宸 paper插画师:poster设计师:oral slides制作人 445 人赞同了该文章 楔子 前些日在写计算数学 ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
随机推荐
- redis3集群管理
以下操作基于redis3.X版本:Redis集群存储原理:Redis 集群使用数据分片(sharding),而非一致性哈希(consistency hashing)来实现,一个 Redis 集群包含 ...
- 加标签的continue用法
1.加标签的continue,类似于C语言的goto语句
- Vue项目中自动将px转换为rem
一.配置与安装步骤: 1.在 Vue 项目的 src 文件夹下创建一个 config 文件夹: 2.在 config 文件夹中创建 rem.js: 3.将以下代码复制到 rem.js 中: // 基准 ...
- k8s安装之kube-state-metrics.yaml
概述 已经有了cadvisor.heapster.metric-server,几乎容器运行的所有指标都能拿到,但是下面这种情况却无能为力: 我调度了多少个replicas?现在可用的有几个? 多少个P ...
- Scikit-learn库
1 简介 对Python语言有所了解的科研人员可能都知道SciPy——一个开源的基于Python的科学计算工具包.基于SciPy,目前开发者们针对不同的应用领域已经发展出了为数众多的分支版本,它们被统 ...
- SQL Server视频总结
经过这几天艰苦卓绝的奋斗,我终于把视频看完了,可是不知道自己看了什么,下面就来总结一下,看看都学到了那些. 数据库和VB中有很多地方相似,我们可以直接搬过来,而不必再当做新知识给自己增加难度,要调动自 ...
- [唐胡璐]Selenium技巧 - 利用MonteScreenRecorder录制视频
我们可以用以下方式在Selenium Webdriver中capture video. 基本步骤: 从 http://www.randelshofer.ch/monte/,下载“MonteScreen ...
- ContextLoaderListener解析
推荐:spring源码 每一个整合spring框架的项目中,总是不可避免地要在web.xml中加入这样一段配置. <!-- Spring配置文件开始 --> <context-par ...
- nachos3.4 threads管理 (c++)
Main.cc //引导代码初始化操作系统内核.允许直接调用内部操作系统功能,简化调试和测试.在实践中,bootstrap代码只会初始化数据结构, //并启动一个用户程序来打印登录提示.//许多内容只 ...
- CSP2019 爆炸记
前言 第一次去参加\(csp\),被吊打,很慌. 之前\(NOIp\)普及组勉强一等,很慌. 考的也不是很好吧,很慌. 反正菜就对了. day -? 初赛,旁边坐着本校高三爷. 初赛比之前的模拟题简单 ...