PTA Strongly Connected Components
Write a program to find the strongly connected components in a digraph.
Format of functions:
void StronglyConnectedComponents( Graph G, void (*visit)(Vertex V) );
where Graph
is defined as the following:
typedef struct VNode *PtrToVNode;
struct VNode {
Vertex Vert;
PtrToVNode Next;
};
typedef struct GNode *Graph;
struct GNode {
int NumOfVertices;
int NumOfEdges;
PtrToVNode *Array;
};
Here void (*visit)(Vertex V)
is a function parameter that is passed into StronglyConnectedComponents
to handle (print with a certain format) each vertex that is visited. The function StronglyConnectedComponents
is supposed to print a return after each component is found.
Sample program of judge:
#include <stdio.h>
#include <stdlib.h>
#define MaxVertices 10 /* maximum number of vertices */
typedef int Vertex; /* vertices are numbered from 0 to MaxVertices-1 */
typedef struct VNode *PtrToVNode;
struct VNode {
Vertex Vert;
PtrToVNode Next;
};
typedef struct GNode *Graph;
struct GNode {
int NumOfVertices;
int NumOfEdges;
PtrToVNode *Array;
};
Graph ReadG(); /* details omitted */
void PrintV( Vertex V )
{
printf("%d ", V);
}
void StronglyConnectedComponents( Graph G, void (*visit)(Vertex V) );
int main()
{
Graph G = ReadG();
StronglyConnectedComponents( G, PrintV );
return 0;
}
/* Your function will be put here */
Sample Input (for the graph shown in the figure):
4 5
0 1
1 2
2 0
3 1
3 2
Sample Output:
3
1 2 0
Note: The output order does not matter. That is, a solution like
0 1 2
3
is also considered correct.
这题目就是直接照搬Tarjan算法实现就好了,Tarjan算法在《算法导论》上第22章有,但是我看了以后并没有明白Tarjan算法的过程orz,最后还是看blog看懂的,所以推荐一个讲Tarjan算法讲的很好的blog:http://blog.csdn.net/acmmmm/article/details/16361033 还有Tarjan算法实现的具体代码:http://blog.csdn.net/acmmmm/article/details/9963693 都是一个ACM大佬写的,我就是看这两个的……其实我也看了很久才看懂Tarjan算法是干啥的……毕竟上课从来不听不知道老师讲的方法是怎么样的……
当然只要理解了Tarjan算法,这题目就相当easy了。
补充:还看到一个英文的讲Tarjan的地方,讲的很全面,在geeksforgeeks上http://www.geeksforgeeks.org/tarjan-algorithm-find-strongly-connected-components/
就是打开可能会有点慢,但是不需要FQ。
直接放代码吧:
- //
- // main.c
- // Strongly Connected Components
- //
- // Created by 余南龙 on 2016/12/6.
- // Copyright © 2016年 余南龙. All rights reserved.
- //
- int dfn[MaxVertices], low[MaxVertices], stack[MaxVertices], top, t, in_stack[MaxVertices];
- int min(int a, int b){
- if(a < b){
- return a;
- }
- else{
- return b;
- }
- }
- void Tarjan(Graph G, int v){
- PtrToVNode node = G->Array[v];
- int son, tmp;
- dfn[v] = low[v] = ++t;
- stack[++top] = v;
- in_stack[v] = ;
- while(NULL != node){
- son = node->Vert;
- == dfn[son]){
- Tarjan(G, son);
- low[v] = min(low[son], low[v]);
- }
- == in_stack[son]){
- low[v] = min(low[v], dfn[son]);
- }
- node = node->Next;
- }
- if(dfn[v] == low[v]){
- do{
- tmp = stack[top--];
- printf("%d ", tmp);
- in_stack[tmp] = ;
- }while(tmp != v);
- printf("\n");
- }
- }
- void StronglyConnectedComponents( Graph G, void (*visit)(Vertex V) ){
- int i;
- ; i < MaxVertices; i++){
- dfn[i] = -;
- low[i] = in_stack[i] = ;
- }
- top = -;
- t = ;
- ; i < G->NumOfVertices; i++){
- == dfn[i]){
- Tarjan(G, i);
- }
- }
- }
PTA Strongly Connected Components的更多相关文章
- Strongly connected components
拓扑排列可以指明除了循环以外的所有指向,当反过来还有路可以走的话,说明有刚刚没算的循环路线,所以反过来能形成的所有树都是循环
- algorithm@ Strongly Connected Component
Strongly Connected Components A directed graph is strongly connected if there is a path between all ...
- [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- LeetCode Number of Connected Components in an Undirected Graph
原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...
- [Redux] Using withRouter() to Inject the Params into Connected Components
We will learn how to use withRouter() to inject params provided by React Router into connected compo ...
- [Locked] Number of Connected Components in an Undirected Graph
Number of Connected Components in an Undirected Graph Given n nodes labeled from 0 to n - 1 and a li ...
- cf475B Strongly Connected City
B. Strongly Connected City time limit per test 2 seconds memory limit per test 256 megabytes input s ...
- Strongly connected(hdu4635(强连通分量))
/* http://acm.hdu.edu.cn/showproblem.php?pid=4635 Strongly connected Time Limit: 2000/1000 MS (Java/ ...
- [Swift]LeetCode323. 无向图中的连通区域的个数 $ Number of Connected Components in an Undirected Graph
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
随机推荐
- Ice分布式程序设计—IceBox(Hello World Application)
忙了三天,总算浏览完此书.藉此记下 Ice 的 IceBox 服务框架. 在此用 IceBox 框架写 Hello World 程序,即以载体来体现其特性. 第一步:编写 Slice 文件,映射生成 ...
- 【转】Hibernate级联注解CascadeType参数详解
cascade(级联) 级联在编写触发器时经常用到,触发器的作用是当 主控表信息改变时,用来保证其关联表中数据同步更新.若对触发器来修改或删除关联表相记录,必须要删除对应的关联表信息,否则,会存有脏数 ...
- Socket网络编程-基础篇
Socket网络编程 网络通讯三要素: IP地址[主机名] 网络中设备的标识 本地回环地址:127.0.0.1 主机名:localhost 端口号 用于标识进程的逻辑地址 有效端口:0~65535 其 ...
- Oracle数据库监听服务无法启动
(1) 安装好Oracle后,启动Net Manager,测试orcl失败,报错“ORA-12514: TNS: 监听程序当前无法识别连接描述符中请求的服务”,需要修改监听文件.修改前: # list ...
- C# 多线程线程池( 一 )
我们将在这里进一步讨论一些.NET类,以及他们在多线程编程中扮演的角色和怎么编程.它们是: System.Threading.ThreadPool 类 System.Threading.Timer 类 ...
- Android 软引用
2013-08-13 13:56 佚名 eoe Android开发者社区 字号:T | T 可能对于Android开发者来说,软引用这个词有的会不是很熟悉,软引用在Java开发中用的比较多,但是, ...
- cmd执行mysql操作
(以下已安装到本机的mysql为例) 登录mysql数据库,如果没有在环境变量配置path到mysql中的bin目录,需要手动进入该目录中 执行:mysql -u用户名 -p密码 (注意:只要进入了m ...
- Request与session与application的区别
(1)request的setAttribute与getAttribute方法一般都是成对出现的,首先通过setAttribute方法设置属性与属性值,然后通过getAttribute方法根据属性获取到 ...
- Git--分布式版本控制系统
使用Git实现多人协作开发 1.简述 每创建一个大的web项目都会有团队协作完成, 然这个过程有可能就像毕业生写论文的过程, 这个过程会有很多...修改的版本, 我们的项目也是会经过无休止的改需求, ...
- ---Linux 10 年的硕果累累啊!
http://mt.sohu.com/20160128/n436204298.shtml