PTA Strongly Connected Components
Write a program to find the strongly connected components in a digraph.
Format of functions:
void StronglyConnectedComponents( Graph G, void (*visit)(Vertex V) );
where Graph
is defined as the following:
typedef struct VNode *PtrToVNode;
struct VNode {
Vertex Vert;
PtrToVNode Next;
};
typedef struct GNode *Graph;
struct GNode {
int NumOfVertices;
int NumOfEdges;
PtrToVNode *Array;
};
Here void (*visit)(Vertex V)
is a function parameter that is passed into StronglyConnectedComponents
to handle (print with a certain format) each vertex that is visited. The function StronglyConnectedComponents
is supposed to print a return after each component is found.
Sample program of judge:
#include <stdio.h>
#include <stdlib.h>
#define MaxVertices 10 /* maximum number of vertices */
typedef int Vertex; /* vertices are numbered from 0 to MaxVertices-1 */
typedef struct VNode *PtrToVNode;
struct VNode {
Vertex Vert;
PtrToVNode Next;
};
typedef struct GNode *Graph;
struct GNode {
int NumOfVertices;
int NumOfEdges;
PtrToVNode *Array;
};
Graph ReadG(); /* details omitted */
void PrintV( Vertex V )
{
printf("%d ", V);
}
void StronglyConnectedComponents( Graph G, void (*visit)(Vertex V) );
int main()
{
Graph G = ReadG();
StronglyConnectedComponents( G, PrintV );
return 0;
}
/* Your function will be put here */
Sample Input (for the graph shown in the figure):
4 5
0 1
1 2
2 0
3 1
3 2
Sample Output:
3
1 2 0
Note: The output order does not matter. That is, a solution like
0 1 2
3
is also considered correct.
这题目就是直接照搬Tarjan算法实现就好了,Tarjan算法在《算法导论》上第22章有,但是我看了以后并没有明白Tarjan算法的过程orz,最后还是看blog看懂的,所以推荐一个讲Tarjan算法讲的很好的blog:http://blog.csdn.net/acmmmm/article/details/16361033 还有Tarjan算法实现的具体代码:http://blog.csdn.net/acmmmm/article/details/9963693 都是一个ACM大佬写的,我就是看这两个的……其实我也看了很久才看懂Tarjan算法是干啥的……毕竟上课从来不听不知道老师讲的方法是怎么样的……
当然只要理解了Tarjan算法,这题目就相当easy了。
补充:还看到一个英文的讲Tarjan的地方,讲的很全面,在geeksforgeeks上http://www.geeksforgeeks.org/tarjan-algorithm-find-strongly-connected-components/
就是打开可能会有点慢,但是不需要FQ。
直接放代码吧:
// // main.c // Strongly Connected Components // // Created by 余南龙 on 2016/12/6. // Copyright © 2016年 余南龙. All rights reserved. // int dfn[MaxVertices], low[MaxVertices], stack[MaxVertices], top, t, in_stack[MaxVertices]; int min(int a, int b){ if(a < b){ return a; } else{ return b; } } void Tarjan(Graph G, int v){ PtrToVNode node = G->Array[v]; int son, tmp; dfn[v] = low[v] = ++t; stack[++top] = v; in_stack[v] = ; while(NULL != node){ son = node->Vert; == dfn[son]){ Tarjan(G, son); low[v] = min(low[son], low[v]); } == in_stack[son]){ low[v] = min(low[v], dfn[son]); } node = node->Next; } if(dfn[v] == low[v]){ do{ tmp = stack[top--]; printf("%d ", tmp); in_stack[tmp] = ; }while(tmp != v); printf("\n"); } } void StronglyConnectedComponents( Graph G, void (*visit)(Vertex V) ){ int i; ; i < MaxVertices; i++){ dfn[i] = -; low[i] = in_stack[i] = ; } top = -; t = ; ; i < G->NumOfVertices; i++){ == dfn[i]){ Tarjan(G, i); } } }
PTA Strongly Connected Components的更多相关文章
- Strongly connected components
拓扑排列可以指明除了循环以外的所有指向,当反过来还有路可以走的话,说明有刚刚没算的循环路线,所以反过来能形成的所有树都是循环
- algorithm@ Strongly Connected Component
Strongly Connected Components A directed graph is strongly connected if there is a path between all ...
- [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- LeetCode Number of Connected Components in an Undirected Graph
原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...
- [Redux] Using withRouter() to Inject the Params into Connected Components
We will learn how to use withRouter() to inject params provided by React Router into connected compo ...
- [Locked] Number of Connected Components in an Undirected Graph
Number of Connected Components in an Undirected Graph Given n nodes labeled from 0 to n - 1 and a li ...
- cf475B Strongly Connected City
B. Strongly Connected City time limit per test 2 seconds memory limit per test 256 megabytes input s ...
- Strongly connected(hdu4635(强连通分量))
/* http://acm.hdu.edu.cn/showproblem.php?pid=4635 Strongly connected Time Limit: 2000/1000 MS (Java/ ...
- [Swift]LeetCode323. 无向图中的连通区域的个数 $ Number of Connected Components in an Undirected Graph
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
随机推荐
- SpringMVC 自动封装枚举类的方法
springmvc默认无法自动封装枚举类,解决方法如下: 1.枚举类 public enum GoodsPromoteEnum { /** * 0 精品 */ fine("精品", ...
- 十五、polygon API
How polygons are handled internally The five basic polygonal API classes Construction History and Tw ...
- WINDOWS Server2008上部署Oracle10g及oracle SQL语法小记
首先安装10G客户端 情况一:一般都会安装到一般报错.因为10G是32BIT客户端.而操作系统是64位的.但是不会影响配置监听程序.自主开发的应用程序依然可以运行. 情况二:报错但是配置完监听程序始终 ...
- iOS开发 GET、POST请求方法(NSURLSession篇)
NSURLConnection,在iOS9被宣布弃用,本文不使用NSURLConnection进行网络编程,有兴趣的童鞋可以参考: [iOS开发 GET.POST请求方法(NSURLConnectio ...
- /etc/passwd&/etc/shadow文件分析
/etc/passwd该目录存储的是操作系统用户信息,该文件为所有用户可见.给linux系统添加一个帐号:useradd -g mysql -d /home/test -m test(:新建一个用户t ...
- 0,SFDC 开发篇 - 开发框架和APEX语法
1, 开发环境 Your Name | Developer Console | Debug | Open Execute Anonymous Window 输入hello world,并点击Excut ...
- VS 设置编译后的程序可以以管理员身份运行
1.首先,创建一个文件命名为 XXX.exe.manifest, 并将以下内容复制到文件 <?xml version="1.0" encoding="UTF-8&q ...
- 一个最小mybatis
项目结构 package hello; import java.io.IOException; import java.io.InputStream; import org.apache.ibatis ...
- android入门:第一天
android是什么? 是一个基于linux开源的操作系统,主要适用于智能设备,如智能手机,平板,智能电视,智能手表,谷歌眼镜,智能家居,由google开发,2008年开发出第一个版本 android ...
- EUI ViewStack实现选项卡组件
一 TabBar+ViewStack实现 这个教程确实没看懂...贼麻烦... 二 RadioButton+ViewStack 在exml中拖动组件RadioButton和ViewStack 设置e ...