Write a program to find the strongly connected components in a digraph.

Format of functions:

void StronglyConnectedComponents( Graph G, void (*visit)(Vertex V) );

where Graph is defined as the following:

typedef struct VNode *PtrToVNode;
struct VNode {
    Vertex Vert;
    PtrToVNode Next;
};
typedef struct GNode *Graph;
struct GNode {
    int NumOfVertices;
    int NumOfEdges;
    PtrToVNode *Array;
};

Here void (*visit)(Vertex V) is a function parameter that is passed into StronglyConnectedComponents to handle (print with a certain format) each vertex that is visited. The function StronglyConnectedComponents is supposed to print a return after each component is found.

Sample program of judge:

#include <stdio.h>
#include <stdlib.h>

#define MaxVertices 10  /* maximum number of vertices */
typedef int Vertex;     /* vertices are numbered from 0 to MaxVertices-1 */
typedef struct VNode *PtrToVNode;
struct VNode {
    Vertex Vert;
    PtrToVNode Next;
};
typedef struct GNode *Graph;
struct GNode {
    int NumOfVertices;
    int NumOfEdges;
    PtrToVNode *Array;
};

Graph ReadG(); /* details omitted */

void PrintV( Vertex V )
{
   printf("%d ", V);
}

void StronglyConnectedComponents( Graph G, void (*visit)(Vertex V) );

int main()
{
    Graph G = ReadG();
    StronglyConnectedComponents( G, PrintV );
    return 0;
}

/* Your function will be put here */

Sample Input (for the graph shown in the figure):

4 5
0 1
1 2
2 0
3 1
3 2

Sample Output:

3
1 2 0

Note: The output order does not matter. That is, a solution like

0 1 2
3

is also considered correct.

这题目就是直接照搬Tarjan算法实现就好了,Tarjan算法在《算法导论》上第22章有,但是我看了以后并没有明白Tarjan算法的过程orz,最后还是看blog看懂的,所以推荐一个讲Tarjan算法讲的很好的blog:http://blog.csdn.net/acmmmm/article/details/16361033 还有Tarjan算法实现的具体代码:http://blog.csdn.net/acmmmm/article/details/9963693 都是一个ACM大佬写的,我就是看这两个的……其实我也看了很久才看懂Tarjan算法是干啥的……毕竟上课从来不听不知道老师讲的方法是怎么样的……

当然只要理解了Tarjan算法,这题目就相当easy了。

补充:还看到一个英文的讲Tarjan的地方,讲的很全面,在geeksforgeeks上http://www.geeksforgeeks.org/tarjan-algorithm-find-strongly-connected-components/

就是打开可能会有点慢,但是不需要FQ。

直接放代码吧:

//
//  main.c
//  Strongly Connected Components
//
//  Created by 余南龙 on 2016/12/6.
//  Copyright © 2016年 余南龙. All rights reserved.
//

int dfn[MaxVertices], low[MaxVertices], stack[MaxVertices], top, t, in_stack[MaxVertices];

int min(int a, int b){
    if(a < b){
        return a;
    }
    else{
        return b;
    }
}

void Tarjan(Graph G, int v){
    PtrToVNode node = G->Array[v];
    int son, tmp;

    dfn[v] = low[v] = ++t;
    stack[++top] = v;
    in_stack[v] = ;

    while(NULL != node){
        son = node->Vert;
         == dfn[son]){
            Tarjan(G, son);
            low[v] = min(low[son], low[v]);
        }
         == in_stack[son]){
            low[v] = min(low[v], dfn[son]);
        }
        node = node->Next;
    }
    if(dfn[v] == low[v]){
        do{
            tmp = stack[top--];
            printf("%d ", tmp);
            in_stack[tmp] = ;
        }while(tmp != v);
        printf("\n");
    }
}

void StronglyConnectedComponents( Graph G, void (*visit)(Vertex V) ){
    int i;

    ; i < MaxVertices; i++){
        dfn[i] = -;
        low[i] = in_stack[i] = ;
    }
    top = -;
    t = ;

    ; i < G->NumOfVertices; i++){
         == dfn[i]){
            Tarjan(G, i);
        }
    }
}

PTA Strongly Connected Components的更多相关文章

  1. Strongly connected components

    拓扑排列可以指明除了循环以外的所有指向,当反过来还有路可以走的话,说明有刚刚没算的循环路线,所以反过来能形成的所有树都是循环

  2. algorithm@ Strongly Connected Component

    Strongly Connected Components A directed graph is strongly connected if there is a path between all ...

  3. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  4. LeetCode Number of Connected Components in an Undirected Graph

    原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...

  5. [Redux] Using withRouter() to Inject the Params into Connected Components

    We will learn how to use withRouter() to inject params provided by React Router into connected compo ...

  6. [Locked] Number of Connected Components in an Undirected Graph

    Number of Connected Components in an Undirected Graph Given n nodes labeled from 0 to n - 1 and a li ...

  7. cf475B Strongly Connected City

    B. Strongly Connected City time limit per test 2 seconds memory limit per test 256 megabytes input s ...

  8. Strongly connected(hdu4635(强连通分量))

    /* http://acm.hdu.edu.cn/showproblem.php?pid=4635 Strongly connected Time Limit: 2000/1000 MS (Java/ ...

  9. [Swift]LeetCode323. 无向图中的连通区域的个数 $ Number of Connected Components in an Undirected Graph

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

随机推荐

  1. SpringMVC 自动封装枚举类的方法

    springmvc默认无法自动封装枚举类,解决方法如下: 1.枚举类 public enum GoodsPromoteEnum { /** * 0 精品 */ fine("精品", ...

  2. 十五、polygon API

    How polygons are handled internally The five basic polygonal API classes Construction History and Tw ...

  3. WINDOWS Server2008上部署Oracle10g及oracle SQL语法小记

    首先安装10G客户端 情况一:一般都会安装到一般报错.因为10G是32BIT客户端.而操作系统是64位的.但是不会影响配置监听程序.自主开发的应用程序依然可以运行. 情况二:报错但是配置完监听程序始终 ...

  4. iOS开发 GET、POST请求方法(NSURLSession篇)

    NSURLConnection,在iOS9被宣布弃用,本文不使用NSURLConnection进行网络编程,有兴趣的童鞋可以参考: [iOS开发 GET.POST请求方法(NSURLConnectio ...

  5. /etc/passwd&/etc/shadow文件分析

    /etc/passwd该目录存储的是操作系统用户信息,该文件为所有用户可见.给linux系统添加一个帐号:useradd -g mysql -d /home/test -m test(:新建一个用户t ...

  6. 0,SFDC 开发篇 - 开发框架和APEX语法

    1, 开发环境 Your Name | Developer Console | Debug | Open Execute Anonymous Window 输入hello world,并点击Excut ...

  7. VS 设置编译后的程序可以以管理员身份运行

    1.首先,创建一个文件命名为 XXX.exe.manifest, 并将以下内容复制到文件 <?xml version="1.0" encoding="UTF-8&q ...

  8. 一个最小mybatis

    项目结构 package hello; import java.io.IOException; import java.io.InputStream; import org.apache.ibatis ...

  9. android入门:第一天

    android是什么? 是一个基于linux开源的操作系统,主要适用于智能设备,如智能手机,平板,智能电视,智能手表,谷歌眼镜,智能家居,由google开发,2008年开发出第一个版本 android ...

  10. EUI ViewStack实现选项卡组件

    一  TabBar+ViewStack实现 这个教程确实没看懂...贼麻烦... 二 RadioButton+ViewStack 在exml中拖动组件RadioButton和ViewStack 设置e ...