前言

消息队列是软件系统领域用来实现系统间通信最广泛的中间件。基于消息队列的方式是指由应用中的某个系统负责发送消息,由关心这条消息的相关系统负责接收消息,并在收到消息后进行各自系统内的业务处理。消息可以非常简单,比如只包含文本字符串;也可以很复杂,比如包含字节流、字节数组,还可以包含嵌入对象,甚至是Java对象(经过序列化的对象)。

消息在被发送后可以立即返回,由消息队列来负责消息的传递,消息发布者只管将消息发布到消息队列而不用管谁来取,消息使用者只管从消息队列中取消息而不管是谁发布的,这样发布者和使用者都不用知道对方的存在(见下图)。

为何要用消息队列

从上面的描述可以看出,消息队列(MQ)是一种系统间相互协作的通信机制。那么什么时候需要使用消息队列呢?

举个例子。某天产品人员说“系统要增加一个锅炉设备报警功能,当锅炉设备温度大于260度后,用户能收到邮件”。在实际场景中这种需求很常见,开发人员觉得这个很简单,就是提供一个判断逻辑,当锅炉设备温度大于260度进行判断,然后发送邮件,最好返回报警信息以警示。

该功能上线运行了一段时间后,产品人员说“设备高温后收到邮件的响应有点慢,很多人都提出这个意见,能不能优化一下”。开发人员首先想到的优化方案是将锅炉设备温度判断逻辑与发送邮件分开执行,怎么分呢?可以单独开启线程来做发送邮件的事情。

没多久,产品人员又说“现在设备高温并收到邮件的响应是快了,但有用户反映没收到报警邮件,能不能在发送邮件的时候先保存所发送邮件的内容,如果邮件发送失败了则进行补发”。

看着开发人员愁眉苦脸的样子,产品人员说“在邮件发送这块平台部门已经做好方案了,你直接用他们提供的服务就行”。开发人员一听,赶紧和平台部门沟通,对方的答复是“我们提供一个类似于邮局信箱的东西,你直接往这个信箱里写上发送邮件的地址、邮件标题和内容,之后就不用你操心了,我们会直接从信箱里取消息,向你所填写的邮件地址发送响应邮箱”。

这个故事讲的就是使用消息队列的典型场景---异步处理。消息队列还可用于解决解耦、流量削峰、日志收集等问题。

简单实现一个消息队列

回到消息队列这个术语本身,它包含了两个关键词: 消息和队列。消息是指在应用间传送的数据,消息的表现形式是多样的,可以简单到只包含文本字符串,也可以复杂到有一个结构化的对象定义格式。对于队列,从抽象意义上来理解,就是指消息的进和出。从时间顺序上说,进和出并不一定是同步进行的,所以需要一个容器来暂存和处理消息。因此,一个典型意义上的消息队列,至少需要包含消息的发送、接受和暂存功能。

  • Broker: 消息处理中心,负责消息的接受、存储、转发等。
  • Producer: 消息生产者,负责产生和发送消息和消息处理中心。
  • Consumer: 消息消费者,负责从消息处理中心获取消息,并进行相应的处理。

可以看到,消息队列服务的核心是消息处理中心,它至少要具备消息发送、消息接受和消息暂存功能。所以,我们就从消息处理中心开始逐步搭建一个消息队列。

消息处理中心

先看一下消息处理中心类(InMemoryStorage)的实现

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.BlockingDeque;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.LinkedBlockingDeque; /**
* @author james mu
* @date 2020/7/27 21:47
*/
public final class InMemoryStorage { //保存消息数据的容器,<topic,消息阻塞队列> 键值对
private final ConcurrentHashMap<String, BlockingQueque<QueueMsg>> storage; private static InMemoryStorage instance; private InMemoryStorage() {
storage = new ConcurrentHashMap<>();
}
//利用双重检查加锁(double-checked locking),首先检查是否示例已经创建了,如果尚未创建,"才"进行同步。这样以来,只有第一次会同步,这正是我们想要的。
public static InMemoryStorage getInstance() {
if (instance == null) {
synchronized (InMemoryStorage.class) {
if (instance == null) {
instance = new InMemoryStorage();
}
}
}
return instance;
} //保存消息到主题中,若topic对应的value为空,会将第二个参数的返回值存入并返回
public boolean put(String topic, QueueMsg msg) {
return storage.computeIfAbsent(topic, (t) -> new LinkedBlockingDeque<>()).add(msg);
} //获得主题中的消息
public <T extends QueueMsg> List<T> get(String topic) {
//判断map中是否包含此topic
if (storage.containsKey(topic)) {
List<T> entities;
//从此主题对应的阻塞队列中出队一个元素
T first = (T) storage.get(topic).poll();
if (first != null) {
entities = new ArrayList<>();
entities.add(first);
List<QueueMsg> otherList = new ArrayList<>();
//移动阻塞队列中最大999个元素到arrayList中
storage.get(topic).drainTo(otherList, 999);
for (QueueMsg other : otherList) {
entities.add((T) other);
}
} else {
entities = Collections.emptyList();
}
}
return Collections.emptyList();
} //删除此map中所有的键值对
public void cleanup() {
storage.clear();
}
}

作为一个消息处理中心中,至少要有一个数据容器用来保存接受到的消息。

Java中的队列(Queue)是提供该功能的一种简单的数据结构,同时为简化队列操作的并发访问处理,我们选择了它的一个子类LinkedBlockingDeque。该类提供了对数据的插入、获取、查询等操作,其底层将数据以链表的形式保存。如果用 offer方法插入数据时队列没满,则数据插入成功,并立 即返回:如果队列满了,则直接返回 false。 如果用 poll方法删除数据时队列不为空, 则返回队 列头部的数据;如果队列为空,则立刻返回 null。

消息格式定义

队列消息接口定义(QueueMsg)

/**
* @author james mu
* @date 2020/7/27 22:00
*/
public interface QueueMsg {
//消息键
String getKey();
//消息头
QueueMsgHeaders getHeaders();
//消息负载byte数组
byte[] getData();
}

队列消息头接口定义(QueueMsgHeaders)

import java.util.Map;

/**
* @author james mu
* @date 2020/7/27 21:55
*/
public interface QueueMsgHeaders {
//消息头放入
byte[] put(String key, byte[] value);
//消息头通过key获取byte数组
byte[] get(String key);
//消息头数据全部读取方法
Map<String, byte[]> getData();
}

队列消息格式(ProtoQueueMsg)

/**
* @author jamesmsw
* @date 2021/2/19 2:23 下午
*/
public class ProtoQueueMsg implements QueueMsg {
private final String key;
private final String value;
private final QueueMsgHeaders headers; public ProtoQueueMsg(String key, String value) {
this(key, value, new DefaultQueueMsgHeaders());
} public ProtoQueueMsg(String key, String value, QueueMsgHeaders headers) {
this.key = key;
this.value = value;
this.headers = headers;
} @Override
public String getKey() {
return key;
} @Override
public QueueMsgHeaders getHeaders() {
return headers;
} @Override
public byte[] getData() {
return value.getBytes();
}
}

默认队列消息头(DefaultQueueMsgHeaders)

import java.util.HashMap;
import java.util.Map; /**
* @author james mu
* @date 2020/7/27 21:57
*/
public class DefaultQueueMsgHeaders implements QueueMsgHeaders { protected final Map<String, byte[]> data = new HashMap<>(); @Override
public byte[] put(String key, byte[] value) {
return data.put(key, value);
} @Override
public byte[] get(String key) {
return data.get(key);
} @Override
public Map<String, byte[]> getData() {
return data;
}
}

消息生产者

import iot.technology.mqtt.storage.msg.QueueMsg;
import iot.technology.mqtt.storage.queue.QueueCallback; /**
* @author james mu
* @date 2020/8/31 11:05
*/
public class Producer<T extends QueueMsg> { private final InMemoryStorage storage = InMemoryStorage.getInstance(); private final String defaultTopic; public Producer(String defaultTopic) {
this.defaultTopic = defaultTopic;
} public void send(String topicName, T msg) {
boolean result = storage.put(topicName, msg);
}
}

消息消费者

import lombok.extern.slf4j.Slf4j;

import java.util.Collections;
import java.util.List;
import java.util.Set;
import java.util.stream.Collectors; /**
* @author james mu
* @date 2020/8/31 11:23
*/
@Slf4j
public class Consumer<T extends QueueMsg> {
private final InMemoryStorage storage = InMemoryStorage.getInstance();
private volatile Set<String> topics;
private volatile boolean stopped;
private volatile boolean subscribed;
private final String topic; //虚构函数
public Consumer(String topic) {
this.topic = topic;
stopped = false;
} public String getTopic() {
return topic;
} public void subscribe() {
topics = Collections.singleton(topic);
subscribed = true;
} //批量订阅主题
public void subscribe(Set<String> topics) {
this.topics = topics;
subscribed = true;
} public void unsubscribe() {
stopped = true;
} //不断读取topic集合下阻塞队列中的数据集合
public List<T> poll(long durationInMillis) {
if (subscribed) {
List<T> messages = topics
.stream()
.map(storage::get)
.flatMap(List::stream)
.map(msg -> (T) msg).collect(Collectors.toList()); if (messages.size() > 0) {
return messages;
}
try {
Thread.sleep(durationInMillis);
} catch (InterruptedException e) {
if (!stopped) {
log.error("Failed to sleep.", e);
}
}
} return Collections.emptyList();
}
}

至此,一个简单的消息队列中就实现完毕了。

有的同学可能会质疑我上面设计的实战性,不用担心,在下一节中,我将带大家通过阅读高达8k+的Thingsboard的内存型消息队列源码,看下是否和我上面的设计一致。

进阶高阶IoT架构-教你如何简单实现一个消息队列的更多相关文章

  1. 手把手教你用redis实现一个简单的mq消息队列(java)

    众所周知,消息队列是应用系统中重要的组件,主要解决应用解耦,异步消息,流量削锋等问题,实现高性能,高可用,可伸缩和最终一致性架构.目前使用较多的消息队列有 ActiveMQ,RabbitMQ,Zero ...

  2. Python 函数进阶-高阶函数

    高阶函数 什么是高阶函数 高阶函数就是能够把函数当成参数传递的函数就是高阶函数,换句话说如果一个函数的参数是函数,那么这个函数就是一个高阶函数. 高阶函数可以是你使用def关键字自定义的函数,也有Py ...

  3. 浅谈JS高阶函数

    引入 我们都知道函数是被设计为执行特定任务的代码块,会在某代码调用它时被执行,获得返回值或者实现其他功能.函数有函数名和参数,而函数参数是当调用函数接收的真实的值. 今天要说的高阶函数的英文为High ...

  4. Kotlin高阶函数实战

    前言 1. 高阶函数有多重要? 高阶函数,在 Kotlin 里有着举足轻重的地位.它是 Kotlin 函数式编程的基石,它是各种框架的关键元素,比如:协程,Jetpack Compose,Gradle ...

  5. python--函数式编程 (高阶函数(map , reduce ,filter,sorted),匿名函数(lambda))

    1.1函数式编程 面向过程编程:我们通过把大段代码拆成函数,通过一层一层的函数,可以把复杂的任务分解成简单的任务,这种一步一步的分解可以称之为面向过程的程序设计.函数就是面向过程的程序设计的基本单元. ...

  6. JavaScript高阶函数 map reduce filter sort

    本文是笔者在看廖雪峰老师JavaScript教程时的个人总结 高阶函数            一个函数就接收另一个函数作为参数,这种函数就称之为高阶函数          1.高阶函数之map:   ...

  7. [Effective JavaScript 笔记]第19条:熟练掌握高阶函数

    高阶函数介绍 高阶函数曾经是函数式编程的一个概念,感觉是很高深的术语.但开发简洁优雅的函数可以使代码更加简单明了.过去几年中脚本语言采用了这些个技术,揭开了函数式编程的最佳惯用法的神秘面纱.高阶函数就 ...

  8. python 把函数作为参数 ---高阶函数

    把函数作为参数 在2.1小节中,我们讲了高阶函数的概念,并编写了一个简单的高阶函数: def add(x, y, f): return f(x) + f(y) 如果传入abs作为参数f的值: add( ...

  9. 聊聊React高阶组件(Higher-Order Components)

    使用 react已经有不短的时间了,最近看到关于 react高阶组件的一篇文章,看了之后顿时眼前一亮,对于我这种还在新手村晃荡.一切朝着打怪升级看齐的小喽啰来说,像这种难度不是太高同时门槛也不是那么低 ...

随机推荐

  1. 学生信息管理系统总结——student数据库中表关系分析

    说到关系,那就不得不提两个东西: 1.E-R图,也称实体-联系图(Entity Relationship Diagram),提供了表示实体类型.属性和联系的方法,用来描述现实世界的概念模型 2.关系模 ...

  2. thymeleaf第二篇:理解原理并为后面springboot进行整合进行铺垫

    官方入门之从虚拟商店理解thymeleaf 参考文档: 简单使用Thymeleaf API渲染模板生成静态页面 邮件通知改造之Thymeleaf渲染模板生成静态页面--看懂会帮助理解springboo ...

  3. docker(10)上传本地镜像到镜像仓库

    前言 之前通过docker搭建过jenkins+python3环境,如果想要在不同的机器上搭建一样的环境,就可以将之前搭建的镜像上传到镜像仓库,这样方便在不同的机器上快速搭建同一套环境. 如果公开的话 ...

  4. 回溯法、子集树、排列树、满m叉树

    显示图: 明确给出了图中的各顶点及边 隐式图: 仅给出初始节点.目标节点及产生子节点的条件(一般有问题提议隐含给出)的情况下,构造一个图. 回溯法: 从初始状态出发,在隐式图中以深度优先的方式搜索问题 ...

  5. 【poj 2891】Strange Way to Express Integers(数论--拓展欧几里德 求解同余方程组 模版题)

    题意:Elina看一本刘汝佳的书(O_O*),里面介绍了一种奇怪的方法表示一个非负整数 m .也就是有 k 对 ( ai , ri ) 可以这样表示--m%ai=ri.问 m 的最小值. 解法:拓展欧 ...

  6. hdu4719 Oh My Holy FFF 线段树维护dp

    题意:给你一个长度为n的数组v,你需要把这个数组分成很多段,你需要保证每一段的长度不能超过k我们设一共有m段,每一段右边界那个数为bi那么我们要使得sum(bi*bi-b(i-1))最大 (1< ...

  7. poj 2007 凸包构造和极角排序输出(模板题)

    Scrambled Polygon Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 10841   Accepted: 508 ...

  8. hdu1625 Numbering Paths (floyd判环)

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission ...

  9. HDU - 3281 dp

    题意: 给你b个球,m个楼层,你需要找到一个楼层数k,使得从小于k这个楼层上面扔下去球,而球不会碎.求在最糟糕的情况下你最多要尝试多少次 题解: dp[i][j]表示你有b个球,楼层总数为m,你找到那 ...

  10. Codeforces Round #667 (Div. 3) B. Minimum Product (贪心,数学)

    题意:给你\(a\)和\(b\)两个数,每次操作可以是任意一个数\(-1\),最多操作\(n\),并且\(a\ge x\),\(b\ge y\),求操作后\(a*b\)的最小值. 题解:观察样例并且在 ...