PAT甲级1151(由前序和中序确定LCA)
The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.
Given any two nodes in a binary tree, you are supposed to find their LCA.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤10,000), the number of keys in the binary tree, respectively. In each of the following two lines, N distinct integers are given as the inorder and preorder traversal sequences of the binary tree, respectively. It is guaranteed that the binary tree can be uniquely determined by the input sequences. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.
Output Specification:
For each given pair of U and V, print in a line LCA of U and V is A.
if the LCA is found and A
is the key. But if A
is one of U and V, print X is an ancestor of Y.
where X
is A
and Y
is the other node. If U or V is not found in the binary tree, print in a line ERROR: U is not found.
or ERROR: V is not found.
or ERROR: U and V are not found.
.
Sample Input:
6 8
7 2 3 4 6 5 1 8
5 3 7 2 6 4 8 1
2 6
8 1
7 9
12 -3
0 8
99 99
Sample Output:
LCA of 2 and 6 is 3.
8 is an ancestor of 1.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.
- 前序和中序的解释:https://blog.csdn.net/ailunlee/article/details/80755357
代码:
- #include<cstdio>
- #include<cstring>
- #include<iostream>
- #include<algorithm>
- #include<queue>
- #include<stack>
- #include<set>
- #include<map>
- #include<vector>
- #include<cmath>
- const int maxn=1e5+;
- typedef long long ll;
- using namespace std;
- map<int,int>pos;
- int in[maxn],pre[maxn];
- void LCA(int l,int r,int preroot,int a,int b)
- {
- if(l>r)
- {
- return;
- }
- int Root=pos[pre[preroot]];
- int ina=pos[a];
- int inb=pos[b];
- if(ina<Root&&inb<Root)
- {
- LCA(l,Root-,preroot+,a,b);
- }
- else if(ina>Root&&inb>Root)
- {
- LCA(Root+,r,preroot+Root-l+,a,b);
- }
- else if ((ina < Root && inb> Root) || (ina > Root && inb < Root))
- {
- printf("LCA of %d and %d is %d.\n", a, b, in[Root]);
- return ;
- }
- else if (ina == Root)
- {
- printf("%d is an ancestor of %d.\n", a, b);
- return ;
- }
- else if (inb == Root)
- {
- printf("%d is an ancestor of %d.\n", b, a);
- return ;
- }
- }
- int main()
- {
- int m,n;
- cin>>m>>n;
- for(int t=;t<=n;t++)
- {
- scanf("%d",&in[t]);
- pos[in[t]]=t;
- }
- for(int t=;t<=n;t++)
- {
- scanf("%d",&pre[t]);
- }
- int a,b;
- while(m--)
- {
- scanf("%d%d",&a,&b);
- if(pos[a]==&&pos[b]==)
- {
- printf("ERROR: %d and %d are not found.\n",a,b);
- }
- else if(pos[a]==&&pos[b]!=)
- {
- printf("ERROR: %d is not found.\n",a);
- }
- else if(pos[a]!=&&pos[b]==)
- {
- printf("ERROR: %d is not found.\n",b);
- }
- else
- {
- LCA(,n,,a,b);
- }
- }
- return ;
- }
PAT甲级1151(由前序和中序确定LCA)的更多相关文章
- 已知树的前序、中序,求后序的java实现&已知树的后序、中序,求前序的java实现
public class Order { int findPosInInOrder(String str,String in,int position){ char c = str.charAt(po ...
- Java实现二叉树的前序、中序、后序遍历(非递归方法)
在上一篇博客中,实现了Java中二叉树的三种遍历方式的递归实现,接下来,在此实现Java中非递归实现二叉树的前序.中序.后序遍历,在非递归实现中,借助了栈来帮助实现遍历.前序和中序比较类似,也简单 ...
- LeetCode二叉树的前序、中序、后序遍历(递归实现)
本文用递归算法实现二叉树的前序.中序和后序遍历,提供Java版的基本模板,在模板上稍作修改,即可解决LeetCode144. Binary Tree Preorder Traversal(二叉树前序遍 ...
- LeetCode 105. Construct Binary Tree from Preorder and Inorder Traversal 由前序和中序遍历建立二叉树 C++
Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...
- c/c++ 用前序和中序,或者中序和后序,创建二叉树
c/c++ 用前序和中序,或者中序和后序,创建二叉树 用前序和中序创建二叉树 //用没有结束标记的char*, clr为前序,lcr为中序来创建树 //前序的第一个字符一定是root节点,然后去中序字 ...
- Java实现二叉树的前序、中序、后序、层序遍历(非递归方法)
在上一篇博客中,实现了Java中二叉树的四种遍历方式的递归实现,接下来,在此实现Java中非递归实现二叉树的前序.中序.后序.层序遍历,在非递归实现中,借助了栈来帮助实现遍历.前序和中序比较类似, ...
- 【2】【leetcode-105,106】 从前序与中序遍历序列构造二叉树,从中序与后序遍历序列构造二叉树
105. 从前序与中序遍历序列构造二叉树 (没思路,典型记住思路好做) 根据一棵树的前序遍历与中序遍历构造二叉树. 注意:你可以假设树中没有重复的元素. 例如,给出 前序遍历 preorder = [ ...
- HDU 1710 (二叉树的前序和中序,求后序)
题目链接 题目大意: 输入二叉树的前序.中序遍历,请输出它的后序遍历 #include <stdio.h> #include <string.h> ; // 长度为n s1 前 ...
- LeetCode:105_Construct Binary Tree from Preorder and Inorder Traversal | 根据前序和中序遍历构建二叉树 | Medium
要求:通过二叉树的前序和中序遍历序列构建一颗二叉树 代码如下: struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode ...
随机推荐
- kafka的学习1
1.Kafka是什么? Apache Kafka 是一款开源的分布式消息引擎系统.倘若“消息引擎系统”这个词对你来说有点陌生的话,那么“消息队列”“消息中间件”的提法想必你一定是有所耳闻的.不过说实话 ...
- GhostNet:more features from cheap operation
- Socket 由浅入深,开发一个真正的通信应用
在说socket之前.我们先了解下相关的网络知识: 端口 在Internet上有很多这样的主机,这些主机一般运行了多个服务软件,同时提供几种服务.每种服务都打开一个Socket,并绑定到一个端口上, ...
- 2020-04-06:insert语句在mysql里经历了什么?
1.会话状态转换为update 2.激活事物状态由 not_active 变为 active 3.查找定位数据 4.进行乐观插入 记录insert的undo记录记录undo的redo log 入red ...
- windows下的Redis安装:
windows下的Redis安装: 百度网盘地址:https://pan.baidu.com/s/1yYED2pXLWolPXvWaABtF2Q 提取密码:xshu 1.解压文件并且创建start.b ...
- 使用部分函数时并未include其所在头文件,但是能编译成功且能运行,为什么?
最近在看APUE,试了上面的一些例子,其中有个例子是使用getpid函数获取进程id,但是在我写demo时,并未引入其所在的头文件unistd.h,结果也能编译成功,也能运行,于是就琢磨下为啥. En ...
- js截取URL网址参数
将本页代码复制粘贴到html页面,打开即可. <!DOCTYPE html> <html lang="en"> <head> <meta ...
- 浏览器自动化的一些体会2 webBrowser控件之ajax
上个帖子简要讨论了浏览器自动化的几种方法.现在讨论webBrowser控件使用中的一些问题.基本的操作就不详细说了,随便网上找个帖子或找本书都有介绍的.这里只写点网上似乎少有人总结过的内容,以及自己的 ...
- 微信DLL劫持反弹shell复现
(该文参考网络他人资料,仅为学习,不许用于非法用途) 一.操作环境 Windows7 : 微信 , Process Explorer(任务管理工具,本实验中用于查找微信程序调用的DLL文件) Ka ...
- ajax、反向ajax、jsonp详解
ajax详解 什么是ajax 其实ajax已经属于老技术了,现在几乎没人不会用了,在这里主要是把底层的东西给大家分享一下,以备应对装逼的面试官. ajax即“Asynchronous Javascri ...