题解-TJOI2015 弦论
字符串 \(s\) 和 \(t\) 和 \(k\)。如果 \(t=0\),不同位置的相同子串算 \(1\) 个;如果 \(t=1\),不同位置的相同子串算多个。求 \(k\) 小子串,如果不存在输出 \(-1\)。
数据范围:\(1\le n\le 5\cdot 10^5\),\(t\in\{0,1\}\),\(1\le k\le 10^9\)。
这题还是很经典的,对理解后缀自动机 \(\tt SAM\) 很有帮助。以前我做过这题(并写了题解),现在复习后缀自动机的时候又做了一次,感悟颇多,遂记之。
首先后缀自动机的节点表示的是一个 \(\bf Endpos\) 集以及该集对应的子串(不一定是后缀)。
一个节点 \(i\) 对应的子串长度范围为 \([len_{fa_i}+1,len_i]\),即对应子串种数为 \(len_i-len_{fa_i}\)。
同时对应每种子串的数量均为 \(|{\bf Endpos}_i|\) 个。
先看处理这些种数、数量等奇奇怪怪的东西的代码(\(dep\) 即 \(len\)):
void run(int t){
for(int i=1;i<=cnt;i++) c[dep[i]]++;
for(int i=1;i<=cnt;i++) c[i]+=c[i-1];
for(int i=1;i<=cnt;i++) q[c[dep[i]]--]=i;
for(int i=cnt;i>=1;i--) sz[fa[q[i]]]+=sz[q[i]]; //①
for(int i=1;i<=cnt;i++) sm[i]=t?sz[i]:(sz[i]=1); //②
sz[1]=sm[1]=0;
for(int i=cnt;i>=1;i--)
for(int c=0;c<26;c++) sm[q[i]]+=sm[ch[q[i]][c]]; //③
}
这个 \(q\) 数组是对后缀自动机节点按 \(len\) 排序(\(len_i>len_{fa_i}\))。
①:求出 \(sz_i=|{\bf Endpos}_i|\)。
②:按照题目要求处理。
③:处理子自动机子串数量和 \(sm_i\),一个 \(|{\bf Endpos}_i|\) 被算 \(len_i-len_{fa_i}\) 次。
至于输出 \(k\) 大子串,一个 \(\tt Dfs\) 的问题。
void Print(int p,int k){
if(k<=sz[p]) return;
k-=sz[p];
for(int c=0;c<26;c++)if(ch[p][c]){
if(k>sm[ch[p][c]]) k-=sm[ch[p][c]];
else return void((putchar(c+'a'),Print(ch[p][c],k)));
}
}
- 代码
#include <bits/stdc++.h>
using namespace std;
//Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair(a,b)
#define x first
#define y second
#define b(a) a.begin()
#define e(a) a.end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
//Data
const int N=5e5;
int n;
char s[N+7];
//SuffuxAutomaton
const int T=N<<1;
int en=1,cnt=1,ch[T+7][26],fa[T+7],dep[T+7]; //dep即len
ll sz[T+7],sm[T+7];
void insert(int c){
int p=en,np=en=++cnt;
dep[np]=dep[p]+1;
for(;p&&!ch[p][c];p=fa[p]) ch[p][c]=np;
if(!p) fa[np]=1;
else {
int q=ch[p][c];
if(dep[q]==dep[p]+1) fa[np]=q;
else {
int nq=++cnt;
dep[nq]=dep[p]+1;
memcpy(ch[nq],ch[q],sizeof ch[q]);
fa[nq]=fa[q],fa[q]=fa[np]=nq;
for(;ch[p][c]==q;p=fa[p]) ch[p][c]=nq;
}
}
sz[np]=1;
}
int c[T+7],q[T+7];
void run(int t){
for(int i=1;i<=cnt;i++) c[dep[i]]++;
for(int i=1;i<=cnt;i++) c[i]+=c[i-1];
for(int i=1;i<=cnt;i++) q[c[dep[i]]--]=i;
for(int i=cnt;i>=1;i--) sz[fa[q[i]]]+=sz[q[i]];
for(int i=1;i<=cnt;i++) sm[i]=t?sz[i]:(sz[i]=1);
sz[1]=sm[1]=0;
for(int i=cnt;i>=1;i--)
for(int c=0;c<26;c++) sm[q[i]]+=sm[ch[q[i]][c]];
}
void Print(int p,int k){
if(k<=sz[p]) return;
k-=sz[p];
for(int c=0;c<26;c++)if(ch[p][c]){
if(k>sm[ch[p][c]]) k-=sm[ch[p][c]];
else return void((putchar(c+'a'),Print(ch[p][c],k)));
}
}
//Main
int main(){
int t,k; scanf("%s%d%d",&s[1],&t,&k),n=strlen(&s[1]);
for(int i=1;i<=n;i++) insert(s[i]-'a');
run(t);
if(sm[1]>=k) Print(1,k); else puts("-1");
return 0;
}
祝大家学习愉快!
题解-TJOI2015 弦论的更多相关文章
- 【BZOJ3998】[TJOI2015]弦论 后缀自动机
[BZOJ3998][TJOI2015]弦论 Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串S 第二行为两个整数T ...
- bzoj3998: [TJOI2015]弦论(SAM+dfs)
3998: [TJOI2015]弦论 题目:传送门 题解: SAM的入门题目(很好的复习了SAM并加强Right集合的使用) 其实对于第K小的字符串直接从root开始一通DFS就好,因为son边是直接 ...
- BZOJ 3998: [TJOI2015]弦论 [后缀自动机 DP]
3998: [TJOI2015]弦论 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2152 Solved: 716[Submit][Status] ...
- Luogu P3975 [TJOI2015]弦论
题目链接 \(Click\) \(Here\) 题目大意: 重复子串不算的第\(k\)大子串 重复子串计入的第\(k\)大子串 写法:后缀自动机. 和\(OI\) \(Wiki\)上介绍的写法不太一样 ...
- 洛谷 P3975 [TJOI2015]弦论 解题报告
P3975 [TJOI2015]弦论 题目描述 为了提高智商,ZJY开始学习弦论.这一天,她在<String theory>中看到了这样一道问题:对于一个给定的长度为\(n\)的字符串,求 ...
- 【BZOJ 3998】 3998: [TJOI2015]弦论 (SAM )
3998: [TJOI2015]弦论 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2627 Solved: 881 Description 对于一 ...
- BZOJ_3998_[TJOI2015]弦论_后缀自动机
BZOJ_3998_[TJOI2015]弦论_后缀自动机 Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串S 第二行 ...
- luogu P3975 [TJOI2015]弦论 SAM
luogu P3975 [TJOI2015]弦论 链接 bzoj 思路 建出sam. 子串算多个的,统计preant tree的子树大小,否则就是大小为1 然后再统计sam的节点能走到多少串. 然后就 ...
- LGOJ3975 TJOI2015 弦论
link:TJOI2015 弦论 题目大意: 给定一个字符串,输出在对该字符串所有的非空子串排序后第\(k\)个 另外的一个限制是\(T\):子串本质相同但位置不同算\(1\)或多个 \(|s| \l ...
随机推荐
- uboot——初始化阶段
start.S |-------------设置cpu状态 |--------------开cache |--------------获得启动方式 |------------------------- ...
- python之路《五》字符串的操作
python的里的字符串的操作是可以说是最常见也是最实用的 我们通常使用双引号来表示字符串" "创建字符串很简单,定义一个变量就可以了 1 name = 'my name \t i ...
- Ceph根据Crush位置读取数据
前言 在ceph研发群里面看到一个cepher在问关于怎么读取ceph的副本的问题,这个功能应该在2012年的时候,我们公司的研发就修改了代码去实现这个功能,只是当时的硬件条件所限,以及本身的稳定性问 ...
- 医学AI论文解读 |Circulation|2018| 超声心动图的全自动检测在临床上的应用
文章来自微信公众号:机器学习炼丹术.号主炼丹兄WX:cyx645016617.文章有问题或者想交流的话欢迎- 参考目录: @ 目录 0 论文 1 概述 2 pipeline 3 技术细节 3.1 预处 ...
- java大厂面经-阿里腾讯、网易美团、京东、华为、快手、字节全在这里了
前言 在这篇文章详细说了该如何去复习,之前也答应各位把面经整理一下,但是因为入职的事情耽搁了,现在整理出来回馈给大家! 美团 一面 0.自我介绍1.问项目(项目详细介绍.用到什么技术.有什么优化)2. ...
- .NET可视化权限功能界面设计
权限功能是信息系统不可或缺的重要部分,一个优秀的权限设计可以使开发工作事半功倍,给使用者带来良好的使用体验. 企业做生意,都会聘请员工,若是员工数量较多,"权限管理"必不可少,这样 ...
- ClassLoader分类
对于类装载器而言一共有三种, 1分别是加载rt包下的Bootstrap加载器,是用C++写的,是在java最早发布的时候写的,用于加载那些最初的类. 2然后java在发展过程中又要发布新的jdk,所以 ...
- 【CF600E】Lomsat gelral——树上启发式合并
(题面来自luogu) 题意翻译 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. ci <= n <= 1e5 裸题.统计时先扫一遍得到出 ...
- libev使用方法
1. libev简介 libev是个高性能跨平台的事件驱动框架,支持io事件,超时事件,子进程状态改变通知,信号通知,文件状态改变通知,还能用来实现wait/notify机制.libev对每种监听事件 ...
- 区块链V1版本实现之四
部分程序代码(添加区块): //添加区块 func (bc *BlockChain) AddBlock(data string) { //创建一个区块 //bc.Block的最后一个区块的Hash值就 ...