题面

Sakuya's task

\[\left(\sum_{i=1}^n\sum_{j=1}^n \varphi(\gcd(i,j))\right)\bmod 10^9+7
\]

数据范围:\(1\le n\le 10^{10}\)。


蒟蒻语

考场爆零真开森。

本来以为要卷 \(1*1\),没想到真要卷 \(1*1\),只不过要一个一个卷……

考场上还以为要洲阁 \(\tt Min\_25\)。


正解

先莫反操作一发:

\[\begin{split}
&\sum_{i=1}^n\sum_{j=1}^n \varphi(\gcd(i,j))\\
=&\sum_{d=1}^n \varphi(d)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}\epsilon(\gcd(i,j))\\
=&\sum_{d=1}^n\varphi(d)\sum_{k=1}^{\lfloor\frac{n}{d}\rfloor}\mu(k)\lfloor\frac{n}{dk}\rfloor^2\\
=&\sum_{T=1}^n\lfloor\frac{n}{T}\rfloor^2\sum_{d|T}\varphi(d)\mu(\frac{T}{d})\\
\end{split}
\]

整除分块左边,右边杜教。

第一次杜教:\(f_1=\varphi\),\(g_1=1\),\(f_1*g_1=id\)。

第二次杜教:\(f_2=\varphi*\mu\),\(g_2=1\),\(f_2*g_2=\varphi=f_1\)。

求 \(f_2\) 会多次调用 \(f_1\),但是内部调用的函数 \(x\) 集相等,所以可以一起求:

//Dusieve
bool vis[iN+1];
int duphi[iN+1],dupm[iN+1];
int Phi(ll x){return x<=N?phi[x]:duphi[n/x];}
int Pm(ll x){return x<=N?pm[x]:dupm[n/x];}
void Dusieve(ll x){
if(x<=N||vis[n/x]) return;
vis[n/x]=true;
for(ll l=2,r;l<=x;l=r+1){
r=x/(x/l),Dusieve(x/l);
(duphi[n/x]-=(ll)(r-l+1)*Phi(x/l)%mod)%=mod;
(dupm[n/x]-=(ll)(r-l+1)*Pm(x/l)%mod)%=mod;
}
(duphi[n/x]+=(ll)x%mod*(x%mod+1)/2%mod)%=mod;
(dupm[n/x]+=duphi[n/x])%=mod;
(duphi[n/x]+=mod)%=mod,(dupm[n/x]+=mod)%=mod;
}

还有个问题:怎么线性筛 \(\varphi*\mu\)?

其实可以狄利克雷前缀和一下,但是这里有个更妙的方法:

\(\mu\) 与 \(\varphi\) 为积性,\(\varphi*\mu\) 必为积性。

根据 \(\mu\) 函数的性质与找规律可得:

\[(\varphi*\mu)(1)=1\\
(\varphi*\mu)(p)=p-2\\
(\varphi*\mu)(p^2)=p(\varphi*\mu)(p)+(\varphi*\mu)(1)\\
(\varphi*\mu)(p^3)=p(\varphi*\mu)(p^2)\\
\]

然后根据积性函数性质,就可以线性筛了。

时间复杂度 \(\Theta(n^{\frac{2}{3}})\)。


代码

取模坑死蒟蒻,细节会有注释。

#include <bits/stdc++.h>
using namespace std; //Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair(a,b)
#define x first
#define y second
#define be(a) a.begin()
#define en(a) a.end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f; //Data
const int mod=1e9+7;
ll n; int ans; //Sieve
const int N=1e7,iN=1e3;
bool np[N+1];
int phi[N+1],pm[N+1],cnt,p[N];
void Sieve(){
np[1]=true,phi[1]=pm[1]=1;
for(int i=2;i<=N;i++){
if(!np[i]) p[cnt++]=i,phi[i]=i-1,pm[i]=i-2;
for(int j=0;j<cnt&&i*p[j]<=N;j++){
np[i*p[j]]=1;
if(i%p[j]==0){
phi[i*p[j]]=(ll)phi[i]*p[j]%mod;
if((i/p[j])%p[j]==0) pm[i*p[j]]=(ll)pm[i]*p[j]%mod;
else pm[i*p[j]]=((ll)pm[i]*p[j]+pm[i/p[j]])%mod;
break;
}
phi[i*p[j]]=(ll)phi[i]*phi[p[j]]%mod;
pm[i*p[j]]=(ll)pm[i]*pm[p[j]]%mod;
}
}
for(int i=2;i<=N;i++)
(phi[i]+=phi[i-1])%=mod,(pm[i]+=pm[i-1])%=mod;
} //Dusieve
bool vis[iN+1];
int duphi[iN+1],dupm[iN+1];
int Phi(ll x){return x<=N?phi[x]:duphi[n/x];}
int Pm(ll x){return x<=N?pm[x]:dupm[n/x];}
void Dusieve(ll x){
if(x<=N||vis[n/x]) return;
vis[n/x]=true;
for(ll l=2,r;l<=x;l=r+1){
r=x/(x/l),Dusieve(x/l);
(duphi[n/x]-=(ll)(r-l+1)*Phi(x/l)%mod)%=mod;
(dupm[n/x]-=(ll)(r-l+1)*Pm(x/l)%mod)%=mod;
}
(duphi[n/x]+=(ll)x%mod*(x%mod+1)/2%mod)%=mod;
(dupm[n/x]+=duphi[n/x])%=mod;
(duphi[n/x]+=mod)%=mod,(dupm[n/x]+=mod)%=mod;
} //Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n;
Sieve(),Dusieve(n);
// cout<<Pm(n)<<'\n';
for(ll l=1,r;l<=n;l=r+1){
r=n/(n/l);
(ans+=(ll)(n/l%mod)*(n/l%mod)%mod*(Pm(r)-Pm(l-1)+mod)%mod)%=mod;
/*
杜教筛是在开始整除分块前开始的,但是为什么这里可以直接Pm调用呢?
蒟蒻的回答:因为杜教筛内部处理了所有n的整除分块的答案。
*/
}
cout<<ans<<'\n';
return 0;
}

祝大家学习愉快!

题解-Sakuya's task的更多相关文章

  1. 3.26-3.31【cf补题+其他】

      计蒜客)翻硬币 //暴力匹配 #include<cstdio> #include<cstring> #define CLR(a, b) memset((a), (b), s ...

  2. HDU-3974 Assign the task题解报告【dfs序+线段树】

    There is a company that has N employees(numbered from 1 to N),every employee in the company has a im ...

  3. 【题解】 CF11D A Simple Task

    [题解] CF11D A Simple Task 传送门 \(n \le 20\) 考虑状态压缩\(dp\). 考虑状态,\(dp(i,j,O)\)表示从\(i\)到\(j\)经过点集\(O\)的路径 ...

  4. Codeforces 959F Mahmoud and Ehab and yet another xor task 线性基 (看题解)

    Mahmoud and Ehab and yet another xor task 存在的元素的方案数都是一样的, 啊, 我好菜啊. 离线之后用线性基取check存不存在,然后计算答案. #inclu ...

  5. [CF11D]A Simple Task 题解

    题解 我们从最简单的思路开始考虑,首先看到题目发现\(n\)非常小,于是很容易想到状态压缩. 我们考虑比较直觉的状态,f[i][j][k]表示以i为起点,当前在j,之前去过的点状态为k的简单环的方案数 ...

  6. [LeetCode]621. Task Scheduler 任务安排 题解

    题目描述 给定一个char数组,代表CPU需要做的任务,包含A-Z,不用考虑顺序,每个任务能在1个单位完成.但是有规定一个非负整数n代表两个相同任务之间需要至少n个时间单位.球最少数量的时间单位完成所 ...

  7. HDU 3974 Assign the task(DFS序)题解

    题意:给出一棵树,改变树的一个节点的值,那么该节点及所有子节点都变为这个值.给出m个询问. 思路:DFS序,将树改为线性结构,用线段树维护.start[ ]记录每个节点的编号,End[ ]为该节点的最 ...

  8. 题解报告:hdu 4907 Task schedule

    Problem Description 有一台机器,并且给你这台机器的工作表,工作表上有n个任务,机器在ti时间执行第i个任务,1秒即可完成1个任务.有m个询问,每个询问有一个数字q,表示如果在q时间 ...

  9. CF 11D A Simple Task 题解

    题面 这道题的数据范围一看就是dfs或状压啦~ 本文以状压的方式来讲解 f[i][j]表示目前的节点是i,已经经历过的节点的状态为j的简单环的个数: 具体的转移方程和细节请看代码: PS:(i& ...

随机推荐

  1. BlockingQueue中 take、offer、put、add的一些比较

    (转自:https://blog.csdn.net/wei_ya_wen/article/details/19344939 侵删) 在java多线程操作中, BlockingQueue<E> ...

  2. 协程实现爬虫的例子主要优势在于充分利用IO时间去请求其他的url

    # 分别使用urlopen和requests两个模块进行演示 # import requests # 需要安装的 # from urllib.request import urlopen # # ur ...

  3. Spark SQL | 目前Spark社区最活跃的组件之一

    Spark SQL是一个用来处理结构化数据的Spark组件,前身是shark,但是shark过多的依赖于hive如采用hive的语法解析器.查询优化器等,制约了Spark各个组件之间的相互集成,因此S ...

  4. pip install 一个本地包时提示error: Microsoft Visual C++ 14.0 is required.

    错误如下: error: Microsoft Visual C++ 14.0 is required. Get it with "Microsoft Visual C++ Build Too ...

  5. 关于Folx一些使用方面的问题详细解答

    Folx作为一款的专业的Mac系统文件下载工具,相信大家或多或少都对它的主打功能,如智能限速.制定计划任务.直链文件下载等功能有所了解,但是对于它的一些相对少见.冷门的功能,却不太熟悉. 下面小编将通 ...

  6. FL Studio音频混音教程

    FL Studio是一款音乐制作.编曲.混音软件,其内置众多电子合成音色,还支持第三方VST等格式插件.软件操作界面简洁易上手,即使你是零音乐基础小白,通过它也能轻松实现自己音乐梦想,很多人给他起了个 ...

  7. mock模拟接口返回数据

    mock,是python中模拟接口返回数据 1.安装 pip install mock import unittest from mock import Mock def add(a,b): pass ...

  8. iOS7使用iOS8上的方法报错处理

    问题描述 我们经常会遇到在低版本上使用高版本方法导致的bug,例如: WebKit discarded an uncaught exception in the webView:decidePolic ...

  9. 【CF620E】New Year Tree

    (题面来自luogu) 题意翻译 你有一棵以1为根的有根树,有n个点,每个节点初始有一个颜色c[i]. 有两种操作: 1 v c 将以v为根的子树中所有点颜色更改为c 2 v 查询以v为根的子树中的节 ...

  10. Java基础教程——字符流

    字符流 字节流服务文本文件时,可能出现中文乱码.因为一个中文字符可能占用多个字节. 针对于非英语系的国家和地区,提供了一套方便读写方式--字符流. java.io.Reader java.io.Wri ...