Linux内核源码分析之setup_arch (二)
1. 概述
接着上一篇《Linux内核源码分析之setup_arch (一)》继续分析,本文首先分析arm_memblock_init函数,然后分析内核启动阶段的是如何进行内存管理的。
2. arm_memblock_init
该函数的功能比较简单,主要就是把meminfo中记录的内存条信息添加到memblock.memory中,然后把内核镜像所在内存区域添加到memblock.reserved中,arm_mm_memblock_reserve把页表所在内存区域添加到memblock.reserved中;如果使用了设备树,则使用arm_dt_memblock_reserve来保留所占用的内存,最后则是调用CPU相关的mdesc->reserve,其对应的调用为cpu_mem_reserve,该函数定义在cpu.c中。
/* arch/arm/mm/init.c */
void __init arm_memblock_init(...) {
for (i = 0; i < mi->nr_banks; i++)
memblock_add(mi->bank[i].start, mi->bank[i].size);
memblock_reserve(__pa(_stext), _end - _stext);
arm_mm_memblock_reserve();
arm_dt_memblock_reserve();
if (mdesc->reserve)
mdesc->reserve();
arm_memblock_steal_permitted = false;
memblock_allow_resize();
memblock_dump_all();
}
/* include/kernel/memblock.h */
struct memblock {
phys_addr_t current_limit;
struct memblock_type memory;
struct memblock_type reserved;
};
3. memblock_alloc
接下来就该执行paging_init函数了,在分析paging_init之前先来点内核启动阶段的内存管理相关的内容。从arm_memblock_init开始引入memblock数据结构,其作用是实现内核启动初期的内存管理功能,严格来说,其生命周期到paging_init::bootmem_init为止,memblock_alloc调用流程如下。
实际查找空闲内存的函数为memblock_find_in_range_node,而该函数中真正实现空闲内存查找的是for_each_free_mem_range_reverse这个宏定义。
/* mm/memblock.c */
phys_addr_t memblock_find_in_range_node(...)
{
...
for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
...
if (cand >= this_start)
return cand;
}
return 0;
}
该宏定义如下,然而其中又嵌套了一个函数Orz...
/* include/linux/memblock.h */
#define for_each_free_mem_range_reverse(i, nid, p_start, p_end, p_nid) \
for (i = (u64)ULLONG_MAX, \
__next_free_mem_range_rev(&i, nid, p_start, p_end, p_nid); \
i != (u64)ULLONG_MAX; \
__next_free_mem_range_rev(&i, nid, p_start, p_end, p_nid))
首先需要说明的是,memblock.reserved标识的区域表示的是已被占用的内存区域,memblock.memory中记录的是内存条信息。现在回到__next_free_mem_range_rev函数,代码段(1)(2)的目的是找出内存条上两个reserved区域之间的内存区域,即空闲区域。找到之后再经过代码段(3)对空闲区域的起始地址和结束地址进行修正,因为代码段(1)(2)只能保证空闲区与当前内存条存在交集,并不能保证该空闲区域完全处于当前内存条之中,主要原因在于无法保证这两个reserved区域都在当前内存条上。
/* mm/memblock.c */
void __init_memblock __next_free_mem_range_rev(...)
{
struct memblock_type *mem = &memblock.memory;
struct memblock_type *rsv = &memblock.reserved;
...
/* (1) */
for ( ; mi >= 0; mi--) {
struct memblock_region *m = &mem->regions[mi];
phys_addr_t m_start = m->base;
phys_addr_t m_end = m->base + m->size;
...
/* (2) */
for ( ; ri >= 0; ri--) {
struct memblock_region *r = &rsv->regions[ri];
phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
...
/* (3) */
if (m_end > r_start) {
if (out_start)
*out_start = max(m_start, r_start);
if (out_end)
*out_end = min(m_end, r_end);
if (out_nid)
*out_nid = memblock_get_region_node(m);
...
return;
}
}
}
*idx = ULLONG_MAX;
}
至此,空闲区域的查找基本就结束了,回到memblock_find_in_range_node函数中,再检查一下该区域的起始地址和结束地址是否合法等等,最终就申请到了所请求大小的内存区域,最后只需要将这块内存区域标记为reserved状态就结束了内存分配的整个过程了。
/* mm/memblock.c */
int memblock_reserve(phys_addr_t base, phys_addr_t size)
{
struct memblock_type *_rgn = &memblock.reserved;
return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
}
4. 总结
- arm_memblock_init函数首先把记录在meminfo记录的内存条信息转移到memblock.memory中,然后把已经使用的内存区域记录到memblock.reserved中,主要包括内核镜像所占用区域、页表区域以及设备树;
- memblock_alloc通过memblock中的memory和reserved中记录的信息进行内存管理,每次申请到内存之后都在memblock.reserved中进行记录。
Linux内核源码分析之setup_arch (二)的更多相关文章
- Linux内核源码分析之setup_arch (三)
1. 前言 在 Linux内核源码分析之setup_arch (二) 中介绍了当前启动阶段的内存分配函数memblock_alloc,该内存分配函数在本篇将要介绍paging_init中用于页表和内存 ...
- Linux内核源码分析之setup_arch (四)
前言 Linux内核源码分析之setup_arch (三) 基本上把setup_arch主要的函数都分析了,由于距离上一篇时间比较久了,所以这里重新贴一下大致的流程图,本文主要分析的是bootmem_ ...
- Linux内核源码分析--内核启动之(4)Image内核启动(setup_arch函数)(Linux-3.0 ARMv7)【转】
原文地址:Linux内核源码分析--内核启动之(4)Image内核启动(setup_arch函数)(Linux-3.0 ARMv7) 作者:tekkamanninja 转自:http://blog.c ...
- Linux内核源码分析方法
一.内核源码之我见 Linux内核代码的庞大令不少人“望而生畏”,也正因为如此,使得人们对Linux的了解仅处于泛泛的层次.如果想透析Linux,深入操作系统的本质,阅读内核源码是最有效的途径.我们都 ...
- Linux内核源码分析--内核启动之(3)Image内核启动(C语言部分)(Linux-3.0 ARMv7)
http://blog.chinaunix.net/uid-20543672-id-3157283.html Linux内核源码分析--内核启动之(3)Image内核启动(C语言部分)(Linux-3 ...
- Linux内核源码分析 day01——内存寻址
前言 Linux内核源码分析 Antz系统编写已经开始了内核部分了,在编写时同时也参考学习一点Linux内核知识. 自制Antz操作系统 一个自制的操作系统,Antz .半图形化半命令式系统,同时嵌入 ...
- 【转】Linux内核源码分析方法
一.内核源码之我见 Linux内核代码的庞大令不少人“望而生畏”,也正因为如此,使得人们对Linux的了解仅处于泛泛的层次.如果想透析Linux,深入操作系统的本质,阅读内核源码是最有效的途径.我们都 ...
- Linux内核源码分析方法_转
Linux内核源码分析方法 转自:http://www.cnblogs.com/fanzhidongyzby/archive/2013/03/20/2970624.html 一.内核源码之我见 Lin ...
- Linux内核源码分析--内核启动之(6)Image内核启动(do_basic_setup函数)(Linux-3.0 ARMv7)【转】
原文地址:Linux内核源码分析--内核启动之(6)Image内核启动(do_basic_setup函数)(Linux-3.0 ARMv7) 作者:tekkamanninja 转自:http://bl ...
随机推荐
- X-Height
术语x-height是指给定字体中,任何给定尺寸下小写字母x的高度. 它提供了一种描述任意字体一般比例的方法. 在印刷中,x-height是一行文字的基线与小写字母(即不包括上升笔画或下降笔画)的主体 ...
- uiautomatorviewer 启动报错
我的sdk是随着AndroidStudio中下载下来的,这样做是有好处的,建议直接装个AndroidStudio这样管理sdk很方便,虽然很大,但是总比后期发现有问题好一点.最近在研究Appium要定 ...
- mysql多表查询之子语句查询
1.子语句查询 1.1子语句查询出来的结果集作为临时表名使用 select * from (select * from person) as aaa; -- as这个起别名关键字是可以省略的 1.2查 ...
- 精尽 MyBatis 源码分析 - MyBatis 初始化(一)之加载 mybatis-config.xml
该系列文档是本人在学习 Mybatis 的源码过程中总结下来的,可能对读者不太友好,请结合我的源码注释(Mybatis源码分析 GitHub 地址.Mybatis-Spring 源码分析 GitHub ...
- mybatis 解决属性名和字段名不一致
1. 数据库中表的设计 2. 实体类 3.mapper映射文件 4. 问题:密码没有获取到 原因:mybatis会根据查询的列名去进行设值 5. 解决列名和属性名不一致的方法 5.1 为列名指定别名, ...
- Apache Flink Dashboard未授权访问导致任意Jar包上传漏洞
漏洞危害 攻击者无需Flink Dashboard认证,通过上传恶意jar包 csdn-[漏洞复现]Apache Flink任意Jar包上传导致远程代码执行 freebuf-Apache Flink ...
- python多线程——如何停止一个死循环的线程
进程想要执行任务就需要依赖线程.换句话说,就是进程中的最小执行单位就是线程,并且一个进程中至少有一个线程. 那什么是多线程?提到多线程这里要说两个概念,就是串行和并行,搞清楚这个,我们才能更好地理解多 ...
- 最全JVM与性能调优知识点总结,看看哪些是你还没掌握的?
前言 JVM调优是每个高级程序员的必修课,在本章中,我会从发展过程以及核心价值来剖析JVM的体系结构.为了让大家更好的理解JVM的工作机制, 我会在讲解完运行时数据区之后,再通过一个类的加载过程到这个 ...
- ElasticSearch 分词器,了解一下
这篇文章主要来介绍下什么是 Analysis ,什么是分词器,以及 ElasticSearch 自带的分词器是怎么工作的,最后会介绍下中文分词是怎么做的. 首先来说下什么是 Analysis: 什么是 ...
- C++ cout格式化输出完全攻略
写算法题的时候突然发现自己忘记基本的C++:cout格式化输出了,赶紧拉出以前的C++学习笔记重新看一看. 部分内容来自教程:C语言中文网(一个很棒的网站) 有时希望按照一定的格式进行输出,如按十六进 ...