代码:

  1 /*
2 这道题也是简单并查集,并查集复杂度:
3 空间复杂度为O(N),建立一个集合的时间复杂度为O(1),N次合并M查找的时间复杂度为O(M Alpha(N)),
4 这里Alpha是Ackerman函数的某个反函数,在很大的范围内(人类目前观测到的宇宙范围估算有10的80次方个原子,
5 这小于前面所说的范围)这个函数的值可以看成是不大于4的,所以并查集的操作可以看作是线性的。
6
7 不弄清楚一个算法的复杂度就是不敢很用
8
9
10 题解:
11 在询问时,标记当前结点,然后将其余的结点并查集一次,求出集合数,
12 如果集合数相等或者前面完整结点的集合数+1=当前集合数,那么也就说明了去掉当前结点是没什么影响的,
13 其余情况就是有影响
14
15 思路很好想,了解了复杂度之后就敢下手了
16
17 解释一下下面内容:
18 1、集合数相等为什么说明了去掉当前结点是没什么影响
19 当你标记一个点之后,在进行并查集这个时候肯定会把这个点孤立出来,也就是多了一个只有这一个点的集合
20 如果在原图中这个点就被孤立,那么标记之后还是相当于孤立,那么这个时候去掉当前结点是没什么影响
21
22 2、前面完整结点的集合数+1=当前集合数时为什么说明了去掉当前结点是没什么影响
23 如果这个点原本并不在原图中孤立,那么如果标记这个点之后,如果这个点去掉不会造成影响,那么标记这个点之后的集合数要比
24 之前的大1
25 */
26 #include<stdio.h>
27 #include<string.h>
28 #include<iostream>
29 #include<algorithm>
30 #include<queue>
31 using namespace std;
32 const int maxn=505;
33 int n,m;
34 struct node
35 {
36 int u,v;
37 } e[5005];
38 int vist[550],fa[550];
39 int Find(int x)
40 {
41 return x==fa[x]?fa[x]:Find(fa[x]);
42 }
43 void Union(int x,int y)
44 {
45 int xc=Find(x);
46 int yc=Find(y);
47 if(xc!=yc)
48 {
49 fa[xc]=yc;
50 }
51 }
52 int main()
53 {
54 int k;
55 int u,v;
56 while(scanf("%d%d",&n,&m)!=EOF)
57 {
58 for(int i=0; i<n; i++)
59 fa[i]=i;
60 for(int i=0; i<m; i++)
61 {
62 scanf("%d%d",&u,&v);
63 e[i].u=u,e[i].v=v;
64 Union(u,v);
65 }
66 int num=0,num1;
67 for(int i=0; i<n; i++)
68 {
69 if(fa[i]==i)
70 {
71 num++;
72 }
73 }
74 memset(vist,0,sizeof(vist));
75 scanf("%d",&k);
76 while(k--)
77 {
78 num1=0;
79 for(int i=0;i<n;i++)
80 fa[i]=i;
81 int x;
82 scanf("%d",&x);
83 vist[x]=1;
84 for(int i=0;i<m;i++)
85 {
86 if(vist[e[i].u]==1||vist[e[i].v]==1)
87 continue;
88 else
89 Union(e[i].u,e[i].v);
90 }
91 for(int i=0;i<n;i++)
92 if(fa[i]==i)
93 num1++;
94 if(num==num1||num+1==num1)
95 printf("City %d is lost.\n",x);
96 else
97 printf("Red Alert: City %d is lost!\n",x);
98 num=num1;
99 }
100 num=0;
101 for(int i=0;i<n;i++)
102 if(vist[i]==1)
103 num++;
104 if(num==n)
105 printf("Game Over.\n");
106 }
107 return 0;
108 }

L2-013 红色警报 (25分) 并查集复杂度的更多相关文章

  1. L2-007 家庭房产 (25分) 并查集

    题目链接 题解:并查集把一个家的并在一起,特殊的一点是编号大的并到小的去.这个题有个坑编号可能为0000,会错数据3和5. 1 #include<bits/stdc++.h> 2 usin ...

  2. PAT-1021 Deepest Root (25 分) 并查集判断成环和联通+求树的深度

    A graph which is connected and acyclic can be considered a tree. The height of the tree depends on t ...

  3. PAT-1107 Social Clusters (30 分) 并查集模板

    1107 Social Clusters (30 分) When register on a social network, you are always asked to specify your ...

  4. PAT A 1118. Birds in Forest (25)【并查集】

    并查集合并 #include<iostream> using namespace std; const int MAX = 10010; int father[MAX],root[MAX] ...

  5. PAT甲题题解-1021. Deepest Root (25)-dfs+并查集

    dfs求最大层数并查集求连通个数 #include <iostream> #include <cstdio> #include <algorithm> #inclu ...

  6. PAT甲题题解-1114. Family Property (25)-(并查集模板题)

    题意:给出每个人的家庭成员信息和自己的房产个数与房产总面积,让你统计出每个家庭的人口数.人均房产个数和人均房产面积.第一行输出家庭个数,随后每行输出家庭成员的最小编号.家庭人口数.人均房产个数.人均房 ...

  7. PAT题解-1118. Birds in Forest (25)-(并查集模板题)

    如题... #include <iostream> #include <cstdio> #include <algorithm> #include <stri ...

  8. PAT甲题题解-1126. Eulerian Path (25)-欧拉回路+并查集判断图的连通性

    题目已经告诉如何判断欧拉回路了,剩下的有一点要注意,可能图本身并不连通. 所以这里用并查集来判断图的联通性. #include <iostream> #include <cstdio ...

  9. 1021. Deepest Root (25)——DFS+并查集

    http://pat.zju.edu.cn/contests/pat-a-practise/1021 无环连通图也可以视为一棵树,选定图中任意一点作为根,如果这时候整个树的深度最大,则称其为 deep ...

随机推荐

  1. 【JS学习】String基础方法

    前言:本博客系列为学习后盾人js教程过程中的记录与产出,如果对你有帮助,欢迎关注,点赞,分享.不足之处也欢迎指正,作者会积极思考与改正. 目录 定义: 字符串的连接: 标签模板的使用: 字符串的基本方 ...

  2. xtrabackup_binlog_info

    文件保存了备份结束时刻binlog的名称和位置

  3. 【Oracle】10g rac如何开启归档和关闭归档

    开启归档: 1.设置想设置的归档的位置,我们这里归档的位置为ASM磁盘组,磁盘组的名称为DATA alter system set log_archive_dest_1='location=+DATA ...

  4. 【EXPDP】指定导出,只导出函数,导出的时候加上where条件过滤

    expdp导出的时候可以使用parfile这个参数,在parfile中添加想要的导出信息: 这里简单写了几句: vim test.par include=function     --导出函数 inc ...

  5. python无法连接mysql,有个小坑,需要注意一下!

    尝试用python链接mysql数据库,按照教程里链接了小半夜,就是没有链接上,找了各种文章,最后发现是版本的问题,我想使用的模块是MySQLdb,刚刚去他们的官网看了一下,最近一次更新是2014年, ...

  6. 与图论的邂逅07:K短路

    在做最短路的题时我们不免会碰到许多求次短路的题,然而我们也能很快地想到解决的办法: 用dijkstra跑一遍最短路,当终点第二次被取出时就是次短路了.时间复杂度为O((N+M)logN).实际上前面得 ...

  7. RabbitMq消费者在初始配置之后进行数据消费

    RabbitMq消费者在初始配置之后进行数据消费 问题背景 在写一个消费rabbitmq消息的程序是,发现了一个问题,消费者的业务逻辑里面依赖这一些配置信息,但是当项目启动时,如果队列里面有积压数据的 ...

  8. code-server Command ' ' not found

    由于通过一些特殊的方式登录linux用户后,全局变量不会自动加载,需要在 vscode 的 bash terminal手动读取 输入 source /etc/profile 或者vim ~/.bash ...

  9. RPC 框架要实现这个功能,我们可以使用泛化调用。那什么是泛化调用呢?我们带着这个问题,先学习下如何在没有接口的情况下进行 RPC 调用。

    RPC 框架要实现这个功能,我们可以使用泛化调用.那什么是泛化调用呢?我们带着这个问题,先学习下如何在没有接口的情况下进行 RPC 调用.

  10. 丢包 ICMP

    小结: 1.ICMP 常见网络丢包故障分析及处理 云极安 云极安 2019-12-25 我们在管理维护网络的过程中经常会遇到数据包丢失的现象.使用Ping命令进行连通性测试,则会发现Ping包延时远远 ...