CopyOnWriteArrayList实现了List接口,RandomAccess,Cloneable,Serializable接口。

CopyOnWriteArrayList特性

1、线程安全,在多线程环境下作为共享变量可以放心使用,无需加锁。
2、通过加锁和volatile保证安全
3、每次对数组进行增删改操作都会复制原先元素到新的数组中,在新的数组上进行操作,最后再赋值回去。

他底层使用的数据结构也是数组,对数组中元素的操作都会经历,加锁,拷贝原数组到新数组中,对新数组进行增删改,然后赋值回旧的数组,最后解锁。

除了这些操作外,CopyOnWriteArrayList内的array数组是被volatile和transient修饰的。

类注释

从类注释中,我们可以知道CopyOnWriteArrayList是线程安全的集合类,因为增删改都是在新的数组中进行的,当更新完成后,新数组又被赋值给原先数组,这样所有线程都可以知道哪些元素被修改了。
虽然数组的拷贝开销较大,但是往往比常用的方案效率要好。
在迭代过程中,不会抛出ConcurrentModificationException,因为并不是在原先数组上修改的。

新增

public boolean add(E e) {
final ReentrantLock lock = this.lock;
// 手动加锁
lock.lock();
try {
// 旧数组
Object[] elements = getArray();
// 原先数组长度
int len = elements.length;
// 新数组是旧数组的拷贝,且容量+1
Object[] newElements = Arrays.copyOf(elements, len + 1);
// 直接将新元素e赋值给新数组的最后
newElements[len] = e;
// 设置给原数组array,array = newElements
setArray(newElements);
return true;
} finally {
// 最后释放锁
lock.unlock();
}
}

在整个add的过程中都是加锁的,所以在同一时刻只有一个线程可以add成功,既然已经加锁,那为什么还要创建新数组进行拷贝呢?这是因为原先数组是volatile修饰的,如果我们简单的在原来数组上修改其中某几个元素的值,是无法触发可见性的,我们必须通过修改数组的内存地址才行,也就说要对数组进行重新赋值才行。通过新建一个数组拷贝旧的数组,是可以避免在赋值过程中出现旧数组值被改变的情况。

当在指定位置插入时,如果插入元素的位置时最后一个,那么只需要拷贝一次,如果在中间位置插入时,需要拷贝两次(将数组一分为二);

public void add(int index, E element) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
Object[] elements = getArray();
int len = elements.length;
if (index > len || index < 0)
// 如果插入的位置不在数组的范围内就抛出越界异常
throw new IndexOutOfBoundsException("Index: "+index+
", Size: "+len);
Object[] newElements;
int numMoved = len - index;
if (numMoved == 0)//如果要插入的位置在最后一个只需要一次拷贝
newElements = Arrays.copyOf(elements, len + 1);
else {
newElements = new Object[len + 1];
// 否则进行两次拷贝
System.arraycopy(elements, 0, newElements, 0, index);
System.arraycopy(elements, index, newElements, index + 1,
numMoved);
}
// 给新元素赋值
newElements[index] = element;
// 设置新数组
setArray(newElements);
} finally {
lock.unlock();
}
}

删除

public E remove(int index) {
final ReentrantLock lock = this.lock;
// 加锁
lock.lock();
try {
Object[] elements = getArray();
int len = elements.length;
// 获取待删除的元素
E oldValue = get(elements, index);
// 减一是因为len是从1开始的,index是从0开始的
int numMoved = len - index - 1;
if (numMoved == 0)// 如果删除的是最后一个,直接删除
setArray(Arrays.copyOf(elements, len - 1));
else {
// 如果删除的是中间元素,新建的数组大小-1,并且从0拷贝到删除元素前,从删除元素的后一个拷贝到最后
Object[] newElements = new Object[len - 1];
System.arraycopy(elements, 0, newElements, 0, index);
System.arraycopy(elements, index + 1, newElements, index,
numMoved);
setArray(newElements);
}
return oldValue;
} finally {
lock.unlock();
}
}

删除元素的思路就是
1、加锁
2、根据删除元素的下标确定在数组中的位置,然后采取不同的策略删除
3、解锁
不管事新增还是删除,lock对象都是被final修饰的,他们都共用一把锁,try finally+数组拷贝保证了能够成功删除指定元素。

小结

该集合类的优点是:读取元素不需要加锁,适合读多写少的场景。例如:读取白名单,黑名单等。
缺点也很明显:内存开销比在原数组上修改多了一倍内存占用,可能导致年轻代GC,如果要求强一致性就不能使用这个了。

CopyOnWriteArrayList设计思路与源码分析的更多相关文章

  1. YYCache设计思路及源码学习

    设计思路 利用YYCache来进行操作,实质操作分为了内存缓存操作(YYMemoryCache)和硬盘缓存操作(YYDiskCache).内存缓存设计一般是在内存中开辟一个空间用以保存请求的数据(一般 ...

  2. CopyOnWriteArrayList实现原理及源码分析

    CopyOnWriteArrayList是Java并发包中提供的一个并发容器,它是个线程安全且读操作无锁的ArrayList,写操作则通过创建底层数组的新副本来实现,是一种读写分离的并发策略,我们也可 ...

  3. asp.net abp模块化开发之通用树2:设计思路及源码解析

    一.前言 上一篇大概说了下abp通用树形模块如何使用,本篇主要分析下设计思路. 日常开发中会用到很多树状结构的数据,比如:产品的多级分类.省市区县,大多数系统也会用到类似“通用字典/数据字典”的功能, ...

  4. Spring Cloud Eureka源码分析之三级缓存的设计原理及源码分析

    Eureka Server 为了提供响应效率,提供了两层的缓存结构,将 Eureka Client 所需要的注册信息,直接存储在缓存结构中,实现原理如下图所示. 第一层缓存:readOnlyCache ...

  5. Android源码分析(五)-----如何从架构师的角度去设计Framework框架

    一 : 架构与程序 软件架构是一种思维方式,而程序只是实现思维方式的一种手段,代码固然重要,但是若没有整体的思维架构,一切程序都如水中浮萍. 二 : 框架如何设计 暂时抛开Android Framew ...

  6. netty源码分析 - Recycler 对象池的设计

    目录 一.为什么需要对象池 二.使用姿势 2.1 同线程创建回收对象 2.2 异线程创建回收对象 三.数据结构 3.1 物理数据结构图 3.2 逻辑数据结构图(重要) 四.源码分析 4.2.同线程获取 ...

  7. Junit 3.8源码分析

    JUnit背景介绍 JUnit是由Erich Gamma和Kent Beck 编写的一个回归测试框架(regression testing framework).Junit测试是程序员测试,即所谓的白 ...

  8. Tomcat详解系列(3) - 源码分析准备和分析入口

    Tomcat - 源码分析准备和分析入口 上文我们介绍了Tomcat的架构设计,接下来我们便可以下载源码以及寻找源码入口了.@pdai 源代码下载和编译 首先是去官网下载Tomcat的源代码和二进制安 ...

  9. Java中ArrayList源码分析

    一.简介 ArrayList是一个数组队列,相当于动态数组.每个ArrayList实例都有自己的容量,该容量至少和所存储数据的个数一样大小,在每次添加数据时,它会使用ensureCapacity()保 ...

随机推荐

  1. FHQ简要笔记

    前言 原文写于 XJ 集训day2 2020.1.19. 现在想想那时候连模板都还没写,只是刚刚理解就在那里瞎yy--之前果然还是太幼稚了. 今天刷训练指南发现全是 Treap 和 Splay ,不想 ...

  2. 题解 CF504E 【Misha and LCP on Tree】

    PullShit 倍增和树剖的差距!!! 一个 TLE, 一个 luogu 最优解第三!!! 放个对比图(上面倍增,下面轻重链剖分): 不过这是两只 log 非正解... Solution \(LCP ...

  3. CF1320 Div1 D.Reachable Strings 题解

    题目大意 给定一个长为\(n\)的01串\(S\),每次你可以对一个串的三个连续位置做:\(011 \rightarrow 110\),\(110 \rightarrow 011\)的操作. 有\(q ...

  4. 落谷 P1412 经营与开发

    题目链接 Solution 用传统的思想考虑正推,发现后面的答案依赖于当前的 \(p\),你不但要记录前 \(i\) 个还要记录 \(p\),显然空间爆炸. 类似 AcWing 300. 任务安排1, ...

  5. 使用MySQL乐观锁解决超卖问题

    在秒杀系统设计中,超卖是一个经典.常见的问题,任何商品都会有数量上限,如何避免成功下订单买到商品的人数不超过商品数量的上限,这是每个抢购活动都要面临的难点. 1 超卖问题描述 在多个用户同时发起对同一 ...

  6. SpringBoot集成Swagger2并配置多个包路径扫描

    1. 简介   随着现在主流的前后端分离模式开发越来越成熟,接口文档的编写和规范是一件非常重要的事.简单的项目来说,对应的controller在一个包路径下,因此在Swagger配置参数时只需要配置一 ...

  7. Windows脚本转换Liunx识别并执行

    1.执行安装: yum install -y dos2unix  插件2.执行 dos2unix test.sh3.赋值权限 chmod   +x    test.sh

  8. 超详细分析Bootloader到内核的启动流程(万字长文)

    @ 目录 Bootloader启动流程分析 Bootloader第一阶段的功能 硬件设备初始化 为加载 Bootloader的第二阶段代码准备RAM空间(初始化内存空间) 复制 Bootloader的 ...

  9. 利用302绕过http协议限制

    360某处ssrf漏洞可探测内网信息(附内网6379探测脚本) http://xss.one/bug_detail.php?wybug_id=wooyun-2016-0229611

  10. JDK 8 新特性,从入门到精通

    default关键字 在jdk1.8以前接口里面是只能有抽象方法,不能有任何方法的实现的. 在jdk1.8里面打破了这个规定,引入了新的关键字:default,使用default修饰方法,可以在接口里 ...