Description

小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:
1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);
2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。
 
每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。
 

Input

输入第一行包含两个整数n,k(k+1≤n)。

第二行包含n个非负整数a1,a2,...,an(0≤ai≤10^4),表示一开始小H得到的序列。

Output

输出第一行包含一个整数,为小H可以得到的最大分数。

Sample Input

7 3

4 1 3 4 0 2 3

Sample Output

108 
题意:给出一个包含n个非负整数的序列,要求将其分割成k+1个序列,每次分割可以获得一定的分数,分数=序列分割位置左侧的数之和×序列分割位置右侧的数之和。要求最大分数是多少。
思路:值得注意的是最后得到的分数与分割的先后顺序无关 所以我们可以大胆的进行划分dp[i][j]表示前i个数分割j次得到的最大分数
dp[i][j]=max(dp[k][j-1]+sum[k]*(sum[i]-sum[k])) 这里略过斜率优化的证明 我们还可以发现 可以用滚动数组降低空间复杂度
细节:斜率分母可能为0 所以要特判一下
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
int dir[4][2]={1,0 ,0,1 ,-1,0 ,0,-1};
int dirs[8][2]={1,0 ,0,1 ,-1,0 ,0,-1, -1,-1 ,-1,1 ,1,-1 ,1,1};
const int inf=0x3f3f3f3f;
const ll mod=1e9+7;
ll n,k;
ll a[100007];
ll dp[100007][2];
ll sum[100007];
ll q[100007];
double slope(ll j,ll k,ll zu){
return sum[k]-sum[j]==0?0:((dp[j][zu]-sum[j]*sum[j]-dp[k][zu]+sum[k]*sum[k])
/(sum[k]-sum[j]));
}
int main(){
ios::sync_with_stdio(false);
while(cin>>n>>k){
for(int i=1;i<=n;i++)
cin>>a[i],sum[i]=sum[i-1]+a[i];
int l,r;
for(int j=1;j<=k;j++){ //分割次数
l=r=1;
for(int i=1;i<=n;i++){ //人数
while(l<r&&slope(q[l],q[l+1],(j-1)%2)<sum[i]) l++;
dp[i][j%2]=dp[q[l]][(j-1)%2]+sum[q[l]]*(sum[i]-sum[q[l]]);
while(l<r&&slope(q[r-1],q[r],(j-1)%2)>slope(q[r],i,(j-1)%2)) r--;
q[++r]=i;
}
}
cout<<dp[n][k%2]<<endl;
}
return 0;
}

BZOJ 3675: 序列分割 (斜率优化dp)的更多相关文章

  1. 【bzoj3675】[Apio2014]序列分割 斜率优化dp

    原文地址:http://www.cnblogs.com/GXZlegend/p/6835179.html 题目描述 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列 ...

  2. bzoj3675[Apio2014]序列分割 斜率优化dp

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3508  Solved: 1402[Submit][Stat ...

  3. [APIO2014]序列分割 --- 斜率优化DP

    [APIO2014]序列分割 题目大意: 你正在玩一个关于长度为\(n\)的非负整数序列的游戏.这个游戏中你需要把序列分成\(k+1\)个非空的块.为了得到\(k+1\)块,你需要重复下面的操作\(k ...

  4. 【BZOJ3675】【APIO2014】序列分割 [斜率优化DP]

    序列分割 Time Limit: 40 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 小H最近迷上了一个分隔序列的游戏. ...

  5. BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)

    洛谷传送门 题目大意:让你把序列切割k次,每次切割你能获得 这一整块两侧数字和的乘积 的分数,求最大的分数并输出切割方案 神题= = 搞了半天也没有想到切割顺序竟然和答案无关...我太弱了 证明很简单 ...

  6. BZOJ 3675 APIO2014 序列切割 斜率优化DP

    题意:链接 方法:斜率优化DP 解析:这题BZ的数据我也是跪了,特意去网上找到当年的数据后面二十个最大的点都过了.就是过不了BZ. 看到这道题自己第一发DP是这么推得: 设f[i][j]是第j次分第i ...

  7. bzoj 4709 [ Jsoi2011 ] 柠檬 —— 斜率优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4709 课上讲的题,还是参考了博客...:https://www.cnblogs.com/GX ...

  8. bzoj 2726 任务安排 斜率优化DP

    这个题目中 斜率优化DP相当于存在一个 y = kx + z 然后给定 n 个对点 (x,y)  然后给你一个k, 要求你维护出这个z最小是多少. 那么对于给定的点来说 我们可以维护出一个下凸壳,因为 ...

  9. P3648 [APIO2014]序列分割 斜率优化

    题解:斜率优化\(DP\) 提交:\(2\)次(特意没开\(long\ long\),然后就死了) 题解: 好的先把自己的式子推了出来: 朴素: 定义\(f[i][j]\)表示前\(i\)个数进行\( ...

随机推荐

  1. Solon rpc 之 SocketD 协议 - 消息上报模式

    Solon rpc 之 SocketD 协议系列 Solon rpc 之 SocketD 协议 - 概述 Solon rpc 之 SocketD 协议 - 消息上报模式 Solon rpc 之 Soc ...

  2. HBase 底层原理详解(深度好文,建议收藏)

    HBase简介 HBase 是一个分布式的.面向列的开源数据库.建立在 HDFS 之上.Hbase的名字的来源是 Hadoop database,即 Hadoop 数据库.HBase 的计算和存储能力 ...

  3. 剑指offer 查找和排序的基本操作:查找排序算法大集合

    重点 查找算法着重掌握:顺序查找.二分查找.哈希表查找.二叉排序树查找. 排序算法着重掌握:冒泡排序.插入排序.归并排序.快速排序. 顺序查找 算法说明 顺序查找适合于存储结构为顺序存储或链接存储的线 ...

  4. web网上书店总结(jsp+servlet)

    web网上书店总结 前端的首页.效果如下: 基本上按照页面有的内容对其实现功能.按照用户划分功能模块,有后台管理员和普通用户,登录的时候会判断账户的类别,例如0权限代表普通用户登录,1权限代表管理员登 ...

  5. 详细的String源码解析

    我们常常把String类型的字符串作为HashMap的key,为什么要这样做呢? 因为String是不可变的,一旦初始化就不再改变了,如果被修改将会是一个新对象. @Test public void ...

  6. docker logs 查看容器日志操作

    查看日志 官方文档:https://docs.docker.com/engine/reference/commandline/logs/ # 查看指定数量的实时日志 # docker logs -tf ...

  7. Objects as Points:预测目标中心,无需NMS等后处理操作 | CVPR 2019

    论文基于关键点预测网络提出CenterNet算法,将检测目标视为关键点,先找到目标的中心点,然后回归其尺寸.对比上一篇同名的CenterNet算法,本文的算法更简洁且性能足够强大,不需要NMS等后处理 ...

  8. 《Go 语言并发之道》读后感 - 第四章

    <Go 语言并发之道>读后感-第四章 约束 约束可以减轻开发者的认知负担以便写出有更小临界区的并发代码.确保某一信息再并发过程中仅能被其中之一的进程进行访问.程序中通常存在两种可能的约束: ...

  9. Linux内存 free 详解

    在Linux下,使用top命令看到内存占用情况:   Mem:  4146788k total, 3825536k used, 321252k free, 213488k buffers Swap: ...

  10. .NET 中依赖注入组件 Autofac 的性能漫聊

    Autofac 是一款超赞的 .NET IoC 容器 ,在众多性能测评中,它也是表现最优秀的一个.它管理类之间的依赖关系, 从而使 应用在规模及复杂性增长的情况下依然可以轻易地修改.它的实现方式是将常 ...