[NOI2020]美食家 题解
题意分析
给出一个带权有向图,要求从节点 $1$ 出发,经过恰好 $T$ 的边权和,回到节点 $1$ ,求可经过的最大点权和。特别地,经过的边权和达到部分特殊数时,会有某个点的点权发生改变。
思路分析
朴素算法
- 时间复杂度: $O(mT)$
- 理论得分: $40pts$
设 $f_{i,j}$ 表示在节点 $j$ ,经过的边权和为 $i$ 时可经过的最大点权和。很容易可以得出 DP 方程:
$$f_{i,j}=\max_{(x,j)\in E}(f_{i-val(x,j),x})+c_j$$
暴力转移,点权改变的情况特判修改即可。
优化1
- 时间复杂度: $O(125n^3k\log T)$
- 理论得分:$75pts$
可以发现 $w$ 的数据范围很小,想到用矩阵快速幂优化。
首先拆点,令所有边边权都为 $1$ ,然后将所求的点权转化为边权:设有 $(u,v,w)\in E$ ,则可以将 $u$ 拆成 $u_0,u_1,...,u_{w-1}$ ,从 $u_{i-1}$ 向 $u_i$ 间连一条边,边权为 $0$ ,然后从 $u_{w-1}$ 向 $v$ 连一条边,边权为 $c_v$ 。
这样,问题就转化为,从节点 $1$ 出发,经过 $T$ 条边,回到节点 $1$ ,求可经过的最大边权和,即最长路。
定义一个广义矩阵乘法 $ans_{i,j}=max(a_{i,k}+b_{k,j})$ 。可以证明这个广义矩阵乘法同样满足矩阵乘法的基本运算律,如结合律。
设邻接矩阵为 $a$ ,可以很容易得出 DP 方程:
$$dp_i=dp_j*a^{i-j}$$
点权改变的情况怎么处理?只要先将时间从小到大排序,然后在相邻的时间之间转移,转移后在改变点权在邻接矩阵中的对应位置修改即可。
优化2
- 时间复杂度: $O(125n^3\log T+25n^2k\log T)$
- 理论得分: $100pts$
分析过后可以发现,因为要求的只是 $dp_{T_{1,1}}$ ,因此只要保留 $dp$ 矩阵的第一行即可;另外,发现在转移的时候要多次乘上邻接矩阵 $a$ 的相同次幂,因此可以先预处理出 $a$ 的 $2$ 的整数次幂。这样处理之后可以降低一维的复杂度。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=300;
const ll INF=0xcfcfcfcfcfcfcfcf;
struct Node
{
ll p[N][N];
}a[31];
struct Fes
{
int t,x,y;
#define t(i) b[i].t
#define x(i) b[i].x
#define y(i) b[i].y
}b[N];
int n,m,T,K;
int c[N],id[N][5];
ll dp[N];
Node Max(Node x)
{
Node now;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
now.p[i][j]=INF;
for(int k=1;k<=n;k++)
now.p[i][j]=max(now.p[i][j],x.p[i][k]+x.p[k][j]);
}
return now;
}//广义矩阵乘法
void Maxx(Node x)
{
ll now[N];
for(int i=1;i<=n;i++)
{
now[i]=INF;
for(int j=1;j<=n;j++)
now[i]=max(now[i],dp[j]+x.p[j][i]);
}
for(int i=1;i<=n;i++)
dp[i]=now[i];
}//一维乘二维
void pre()
{
for(int i=1;i<=30;i++)
a[i]=Max(a[i-1]);
}//预处理次幂
void fastpow(int x)
{
for(int i=30;i>=0;i--)
if(x&(1<<i))
Maxx(a[i]);
}//快速幂
bool cmp(Fes x,Fes y)
{
return x.t<y.t;
}
int main()
{
scanf("%d%d%d%d",&n,&m,&T,&K);
for(int i=1;i<=n;i++)
scanf("%d",&c[i]),id[i][0]=i;
memset(a,0xcfcf,sizeof(a));
for(int i=1,u,v,w;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&w);
for(int j=1;j<w;j++)
{
if(!id[u][j])
id[u][j]=++n;
a[0].p[id[u][j-1]][id[u][j]]=0;
}
a[0].p[id[u][w-1]][v]=c[v];//拆点
}
pre();
for(int i=1;i<=K;i++)
scanf("%d%d%d",&t(i),&x(i),&y(i));
sort(b+1,b+K+1,cmp);t(K+1)=T;
memset(dp,0xcfcf,sizeof(dp));dp[1]=c[1];//初状态
for(int i=1,d;i<=K+1;i++)
{
d=t(i)-t(i-1);
fastpow(d);
dp[x(i)]+=y(i);//点权改变
}//在相邻的时间之间转移
printf(dp[1]<0?"-1":"%lld",dp[1]);
return 0;
}
[NOI2020]美食家 题解的更多相关文章
- P6772 [NOI2020]美食家
题目大意 给你一个 \(n\) 个点,\(m\) 条边的有向图,每条边有一个权值 \(w_i\) ,每个节点有一个权值 \(a_i\) . 你从节点 \(1\) 出发,每经过一个节点就可以获得该点的权 ...
- [XIN算法应用]NOI2020美食家
XIN(\(updated 2021.6.4\)) 对于很多很多的题目,发现自己并不会之后,往往会直接冲上一个XIN队算法,然而,这样 \(\huge{\text{鲁莽}}\) 的行为只能获得 TLE ...
- [NOI2020] 美食家
很好,自己会做NOI签到题了,去年只要会这题,再多打点暴力,\(Ag\)到手,希望今年\(NOI\)同步赛过\(Ag\)线吧,得有点拿得出手的成绩证明啊. 考虑\(T\)非常大,\(n\)又很小. 想 ...
- 洛谷 P6772 - [NOI2020]美食家(广义矩阵快速幂)
题面传送门 题意: 有一张 \(n\) 个点 \(m\) 条边的有向图,第 \(0\) 天的时候你在 \(1\) 号城市,第 \(T\) 天的时候你要回到 \(1\) 号城市. 每条边上的边权表示从城 ...
- 【NOI2020】美食家(矩阵)
Description 给定一张有向图,\(n\) 个顶点,\(m\) 条边.第 \(i\) 条边从 \(u_i\) 到 \(v_i\),走完该边的用时为 \(w_i\).每一个点有一个价值 \(c\ ...
- XIN队算法
XIN队算法 注:名称由莫队算法改编而来 从luogu搬过来了... \(newly\;upd:2021.7.8\) \(newly\;upd:2021.6.6\) OI至高算法,只要XIN队算法打满 ...
- [BZOJ1691][Usaco2007 Dec]挑剔的美食家
[BZOJ1691][Usaco2007 Dec]挑剔的美食家 试题描述 与很多奶牛一样,Farmer John那群养尊处优的奶牛们对食物越来越挑剔,随便拿堆草就能打发她们午饭的日子自然是一去不返了. ...
- bzoj usaco 金组水题题解(1)
UPD:我真不是想骗访问量TAT..一开始没注意总长度写着写着网页崩了王仓(其实中午的时候就时常开始卡了= =)....损失了2h(幸好长一点的都单独开了一篇)....吓得赶紧分成两坨....TAT. ...
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
随机推荐
- 7-Pandas之索引调整方法
一.调整索引.修改列标签 1.调整索引的两种情况: 重新索引 设置新的索引 (1)重新索引 在Pandas对象中,其实索引也是一个对象,所以可对其进行修改. 例如:df.index=['a','b', ...
- PHP imagealphablending - 设定图像的混色模式
imagealphablending — 设定图像的混色模式.高佣联盟 www.cgewang.com 语法 bool imagealphablending ( resource $image , b ...
- 题解 [SHOI2002]滑雪
记忆化搜索$||dp||$剪枝 先讲方法,代码待会上 方法一:记忆化搜索 这个方法不怎么解释,就是每搜索完一个高度的最长路径记录一下,以后搜索其他的点时如果走到了这条路就直接用记录的值计算就是了 方法 ...
- Win10系统安装MySQL Workbench 8
系统:Window10 专业版 MySQL Workbench 8.0.19 下载地址:https://dev.mysql.com/downloads/workbench/8.0.html 点击Dow ...
- three.js 着色器材质基础(一)
说起three.js,着色器材质总是绕不过的话题,今天郭先生就说一说什么是着色器材质.着色器材质是很需要灵感和数学知识的,可以用简短的代码和绘制出十分丰富的图像,可以说着色器材质是脱离three.js ...
- QWebEngineView简单使用
QWebEngineView是提供一个访问web页面的widget,这里是一个简单的使用代码 头文件 #ifndef MAINWINDOW_H #define MAINWINDOW_H #includ ...
- Python分析「我们为什么这么穷」
- CSS网页排版
自印刷出版物诞生以来,排版就一直是平面设计的基础. 同样,排版在网页设计中也扮演着重要角色. 1.CSS的基本排版技术 1.1 文本颜色 对应网页而言,文本颜色也许是最基本的样式之一. 默认情况下,浏 ...
- 详解 LSTM
LSTM 长短时记忆网络(Long Short Term Memory Network, LSTM),是一种改进之后的循环神经网络,可以解决RNN无法处理长距离的依赖的问题,目前比较流行. 长短时记忆 ...
- ALGEBRA-3 线性映射
不求甚解 [零空间] 零空间对加法和标量乘法封闭,因此属于子空间: