LINK:Kaavi and Magic Spell

一打CF才知道自己原来这么菜 这题完全没想到.

可以发现 如果dp f[i][j]表示前i个字符匹配T的前j个字符的方案数 此时转移变得异常麻烦 状态转移一次变成了O(n).

会超时 而且这个状态的转移也是不正确的 可能当前的S字符串后面放了一些不能匹配的东西 但是此时却体现不出来.

那我们如何描述每次增加一个字符且和T匹配多少这种状态呢.

一个思路 先对于S串的某个i暴力枚举 其对应在T中的位置 这样的话dp就变成了

f[i][j][k]表示前i个字符 匹配了T中j~k区间的方案数 这样就没有刚才的问题了。

不过 这个状态还是不行 因为存在重复 的方案被统计到了.

仔细思考 对于刚才的那个状态 之所以会重复是因为两种方案的重叠都被我们枚举到了。

考虑最终的答案的方案数 不难发现对于i号点来说 其位置是不固定的。

我们完全可以只枚举1的位置在哪然后进行上述的区间dp.

这样的话就既没有加到队首 整体右移的问题 也没有状态数重复的问题.

有状态 f[i][j]表示 前j-i+1个字符 匹配了T的 i~j的区间的方案数.

考虑转移.

对于 第j-i+2个字符 可以判断一下能否转移即可。

由于每次使用的字符固定 不需要再枚举决策。

所以复杂度为n^2.

const int MAXN=3010;
int T,n,ans,m;
int f[MAXN][MAXN];
char a[MAXN],b[MAXN];
int main()
{
freopen("1.in","r",stdin);
gc(a);gc(b);
n=strlen(a+1);
m=strlen(b+1);
rep(1,n,i)if(a[1]==b[i]||i>m)f[i][i]=1;
for(int len=2;len<=n;++len)
{
for(int i=1;i<=n-len+1;++i)
{
int j=i+len-1;
if(a[len]==b[i]||i>m)f[i][j]=(f[i][j]+f[i+1][j])%mod;
if(a[len]==b[j]||j>m)f[i][j]=(f[i][j]+f[i][j-1])%mod;
}
}
rep(m,n,i)ans=(ans+f[1][i])%mod;
put(ans*2%mod);
return 0;
}

CF R 635 div1 C Kaavi and Magic Spell 区间dp的更多相关文章

  1. CF1336C Kaavi and Magic Spell

    CF1336C Kaavi and Magic Spell 区间dp 题意 给一个长度为 \(n\) 的字符串 \(S\) 和一个长度为 \(m\) 的字符串\(T\) ,\(1\le m\le n\ ...

  2. CF R 635 div2 1337D Xenia and Colorful Gems 贪心 二分 双指针

    LINK:Xenia and Colorful Gems 考试的时候没想到一个很好的做法. 赛后也有一个想法. 可以考虑答案的样子 x,y,z 可以发现 一共有 x<=y<=z,z< ...

  3. 【前行&赛时总结】◇第4站&赛时9◇ CF Round 513 Div1+Div2

    ◇第4站&赛时9◇ CF Round 513 Div1+Div2 第一次在CF里涨Rating QWQ 深感不易……作blog以记之 ( ̄▽ ̄)" +Codeforces 的门为你打 ...

  4. CF 983B XOR-pyramid(区间dp,异或)

    CF 983B XOR-pyramid(区间dp,异或) 若有一个长度为m的数组b,定义函数f为: \(f(b) = \begin{cases} b[1] & \quad \text{if } ...

  5. CF 149D Coloring Brackets 区间dp ****

    给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2.每对括号必须只能给其中的一个上色 3.相邻的两个不能上同色,可以都不上色 求0-len-1这一区间内 ...

  6. Codeforces Round #354 (Div. 2)-C. Vasya and String,区间dp问题,好几次cf都有这种题,看来的好好学学;

    C. Vasya and String time limit per test 1 second memory limit per test 256 megabytes input standard ...

  7. CF 149D Coloring Brackets(区间DP,好题,给配对的括号上色,求上色方案数,限制条件多,dp四维)

    1.http://codeforces.com/problemset/problem/149/D 2.题目大意 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色, ...

  8. topcoder srm 635 div1

    problem1 link 首先枚举长度$L$.然后计算每一段长度$L$的差值最大公约数,然后差值除以最大公约数的结果可以作为当前段的关键字.然后不同段就可以比较他们的关键字,一样就是可以转化的. p ...

  9. CF Round 542 Div1.

    B. Wrong Answer 构造一个长度为 2000 的数组,满足最大“子段和 $\times$ 子段长度”比最大子段和刚好大 k sol: 一个比较好的构造方法: 令数组总和为 $S$,然后构造 ...

随机推荐

  1. 51Nod 1534 棋子游戏 题解

    题目 波雷卡普和瓦西里喜欢简单的逻辑游戏.今天他们玩了一个游戏,这个游戏在一个很大的棋盘上进行,他们每个人有一个棋子.他们轮流移动自己的棋子,波雷卡普先开始.每一步移动中,波雷卡普可以将他的棋子从(x ...

  2. 洛谷P3237 [HNOI2014]米特运输(树形dp)

    解题报告 题干 米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题. D星上有N个城市,我们将其顺序编号为1到N,1号城市为首都. ...

  3. WPF 2D纹理的准确映射

    TextureCoordinates定义了如何将一副2D纹理映射到所建立的3D网格上,TextureCoordinates为Positions集合中的每一个3D顶点提供了一个2D顶点. 映射时方向确定 ...

  4. Scala 基础(三):Scala语言快速开发入门

    1.Scala执行流程分析 2.Scala程序开发注意事项(重点) Scala源文件以 “.scala" 为扩展名. Scala程序的执行入口是main()函数. Scala语言严格区分大小 ...

  5. 数据可视化之powerBI技巧(十五)采悟:Power BI动态技巧:动态显示数据层级

    今天给大家分享一个动态显示数据层级的技巧,效果如下: 无论想按什么维度.什么顺序查看分析数据,只需要选择不同的切片器组合就行了. 方法如下:01 | 把数据聚合为分析需要的最细粒度 本文假设最细分析粒 ...

  6. 数据可视化实例(十四):面积图 (matplotlib,pandas)

    偏差 (Deviation) 面积图 (Area Chart) 通过对轴和线之间的区域进行着色,面积图不仅强调峰和谷,而且还强调高点和低点的持续时间. 高点持续时间越长,线下面积越大. https:/ ...

  7. Django框架12 /同源、跨域、CORS

    Django框架12 /同源.跨域.CORS 目录 Django框架12 /同源.跨域.CORS 1. 同源策略 2. 跨域 3. 解决跨域:CORS/跨域资源共享 1. 同源策略 同源策略(Same ...

  8. matplot笔记

    文件读取: data_train = pd.read_table('G:\python\PYproject\Titanic/train_20171215.txt',header=None,encodi ...

  9. MySQL数据库使用报错ERROR 1820 (HY000): You must reset your password using ALTER USER statement before executing this statement.

    今天MySQL数据库,在使用的过程中一直报错ERROR 1820 (HY000): You must reset your password using ALTER USER statement be ...

  10. J.U.C体系进阶(四):juc-sync 同步器框架

    Java - J.U.C体系进阶 作者:Kerwin 邮箱:806857264@qq.com 说到做到,就是我的忍道! juc-sync 同步器框架 同步器名称 作用 CountDownLatch 倒 ...