LINK:回首过去

考试的时候没推出来 原因:状态真的很差 以及 数论方面的 我甚至连除数分块都给忘了.

手玩几个数据 可以发现 \(\frac{x}{y}\)满足题目中的条件当且仅当 这个是一个既约分数 且 y中只含2,5的因子.

枚举y考虑贡献 先除掉本身的2,5的倍数后变成w1 之后考虑x 1~n中x只要是w1的倍数那么都是不合法的。

把这些数给去掉即可.这样就得到了一个O(n)的做法。

观察数据范围 容易想到 考察的是一个根号的算法。

此时考虑枚举w1 那么可以发现w1要满足 不是2,5的倍数 此时贡献为n/w1 考虑这样的数字有多少个 容易发现可以暴力统计 强行乘上若干个2和若干个5.

推到这里我昨天卡住了 因为这还没有达到很好的效果 忘了整除分块了 直接分块 容易得到一个\(\sqrt{n}log_2log_5\)的做法。

不过这样 只能信仰过题。考虑把两个log优化掉 可以发现求多少个的时候其实是求 1~n/w1中 只包含2,5质因子数的个数。

将这个东西预处理 然后从小到大排序 整除分块的时候 就可以单调的判断了 复杂度\(\sqrt{n}+log^3\)

中间一个小步骤需要简单容斥一下.

const ll MAXN=10010;
ll n,ans,cnt;
ll a[MAXN];
inline ll calc(ll x)
{
return x-x/2-x/5+x/10;
}
signed main()
{
//freopen("1.in","r",stdin);
get(n);
for(ll i=1;i<=n;i=i*2)
for(ll j=1;i*j<=n;j=j*5)a[++cnt]=i*j;
sort(a+1,a+1+cnt);
ll w1,w2,flag=cnt;
for(ll i=1;i<=n;i=w2+1)
{
w1=n/i;w2=n/w1;
while(a[flag]>w1&&flag)--flag;
ans=ans+w1*(calc(w2)-calc(i-1))*flag;
}
putl(ans);
return 0;
}

luogu P6583 回首过去 简单数论变换 简单容斥的更多相关文章

  1. (step7.2.1)hdu 1395(2^x mod n = 1——简单数论)

    题目大意:输入一个整数n,输出使2^x mod n = 1成立的最小值K 解题思路:简单数论 1)n可能不能为偶数.因为偶数可不可能模上偶数以后==1. 2)n肯定不可能为1 .因为任何数模上1 == ...

  2. 简单数论之整除&质因数分解&唯一分解定理

    [整除] 若a被b整除,即a是b的倍数,那么记作b|a("|"是整除符号),读作"b整除a"或"a能被b整除".b叫做a的约数(或因数),a ...

  3. 2018.12.17 bzoj1406 : [AHOI2007]密码箱(简单数论)

    传送门 简单数论暴力题. 题目简述:要求求出所有满足x2≡1mod&ThinSpace;&ThinSpace;nx^2\equiv1 \mod nx2≡1modn且0≤x<n0\ ...

  4. Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)

    Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...

  5. Help Hanzo (LightOJ - 1197) 【简单数论】【筛区间质数】

    Help Hanzo (LightOJ - 1197) [简单数论][筛区间质数] 标签: 入门讲座题解 数论 题目描述 Amakusa, the evil spiritual leader has ...

  6. Aladdin and the Flying Carpet (LightOJ - 1341)【简单数论】【算术基本定理】【分解质因数】

    Aladdin and the Flying Carpet (LightOJ - 1341)[简单数论][算术基本定理][分解质因数](未完成) 标签:入门讲座题解 数论 题目描述 It's said ...

  7. Sigma Function (LightOJ - 1336)【简单数论】【算术基本定理】【思维】

    Sigma Function (LightOJ - 1336)[简单数论][算术基本定理][思维] 标签: 入门讲座题解 数论 题目描述 Sigma function is an interestin ...

  8. Least Common Multiple (HDU - 1019) 【简单数论】【LCM】【欧几里得辗转相除法】

    Least Common Multiple (HDU - 1019) [简单数论][LCM][欧几里得辗转相除法] 标签: 入门讲座题解 数论 题目描述 The least common multip ...

  9. 七夕节 (HDU - 1215) 【简单数论】【找因数】

    七夕节 (HDU - 1215) [简单数论][找因数] 标签: 入门讲座题解 数论 题目描述 七夕节那天,月老来到数字王国,他在城门上贴了一张告示,并且和数字王国的人们说:"你们想知道你们 ...

随机推荐

  1. css3实现背景颜色渐变,文字颜色渐变,边框颜色渐变

    css3的渐变可以使用2个或者多个指定的颜色之间显示平稳的过渡的效果.这篇文章主要介绍下css3实现背景颜色渐变,文字颜色渐变,边框颜色渐变的方法,以便大家学习参考! 1.css背景颜色渐变 代码: ...

  2. css定位方式有哪几种?

    复杂的网页布局都是通过各种网页元素灵活定位实现的,网页中的各种元素定位都有自己的特点.下面我们来看一下css的几种定位方式. float定位(即浮动定位): 这种定位方式很简单,只需规定一个浮动的方向 ...

  3. go实现爬虫

    条件:1.第三方包github.com/tebeka/selenium,selenium自动化测试工具2.google驱动chromedriver.exe,要与本地浏览器的版本号对应,下载:http: ...

  4. [USACO16OPEN]248 G——区间dp

    [USACO16OPEN]248 G 题目描述 Bessie likes downloading games to play on her cell phone, even though she do ...

  5. Maven 专题(五):Maven核心概念详解(一)

    **Maven 的核心程序中仅仅定义了抽象的生命周期,而具体的操作则是由 Maven 的插件来完成的.**可是 Maven 的插件并不包含在 Maven 的核心程序中,在首次使用时需要联网下载. 下载 ...

  6. 数据可视化之powerBI入门 (一)认识PowerBI

    来自  https://zhuanlan.zhihu.com/p/64144024 Power BI是什么? Power BI是微软推出的数据分析和可视化工具,我们先来看看微软官方是怎么介绍的: Po ...

  7. Django13 /缓存、信号、django的读写分离

    Django13 /缓存.信号.django的读写分离 目录 Django13 /缓存.信号.django的读写分离 1. 缓存 2. 信号 3. django的读写分离 1. 缓存 缓存简述: 缓存 ...

  8. tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'x_1' with dtype float and shape [?,227,227,3]

    记一次超级蠢超级折磨我的bug. 报错内容: tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a ...

  9. 学习Java8系列-Lambda

    Lambda演进 小王在公司正在开发一个学生管理系统,产品经理向他提出一个需求,要筛选出年龄大于15的学生,于是小王写出了以下代码:     public static List<Student ...

  10. Ethical Hacking - Web Penetration Testing(8)

    SQL INJECTION WHAT IS SQL? Most websites use a database to store data. Most data stored in it(userna ...