(一)设置坐标轴的位置和展示形式

(1)向画布中任意位置添加任意数量的坐标轴

'''
通过在画布的任意位置和区域,讲解设置坐标轴的位置和坐标轴的展示形式的实现方法,
与subplot,subplots不同,axes可以完成子区的交错,覆盖和重叠等视图组合
ax(rect, frameon, facecolor)的参数的含义
rect=[left, bottom, width, height]
left------------>左侧边缘距离画布边缘的距离
bottom---------->距离底部画布边缘的距离
width----------->坐标轴的宽度
height---------->坐标轴的高度
left和height--------->画布宽度的归一化距离
bottom和width-------->画布高度的归一化距离
frameon------------>True,绘制坐标轴的四条轴脊
facecolor---------->坐标轴背景的颜色
'''
import matplotlib.pyplot as plt
import numpy as np plt.axes([0.05, 0.7, 0.3, 0.3], frameon=True, facecolor="y", aspect="equal")
plt.plot(np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle="--") plt.axes([0.3, .4, .3, .3], frameon=True, facecolor="y", aspect="equal")
plt.plot(2+np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle="-") plt.axes([0.55, .1, .3, .3], frameon=True, facecolor="y", aspect="equal")
plt.plot(4+np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle=":") plt.show()

(2)函数axis()--------调整已经确定的坐标轴的显示,隐藏和刻度范围

'''
通过在画布的任意位置和区域,讲解设置坐标轴的位置和坐标轴的展示形式的实现方法,
与subplot,subplots不同,axes可以完成子区的交错,覆盖和重叠等视图组合
ax(rect, frameon, facecolor)的参数的含义
rect=[left, bottom, width, height]
left------------>左侧边缘距离画布边缘的距离
bottom---------->距离底部画布边缘的距离
width----------->坐标轴的宽度
height---------->坐标轴的高度
left和height--------->画布宽度的归一化距离
bottom和width-------->画布高度的归一化距离
frameon------------>True,绘制坐标轴的四条轴脊
facecolor---------->坐标轴背景的颜色
'''
import matplotlib.pyplot as plt
import numpy as np plt.axes([0.05, 0.7, 0.3, 0.3], frameon=True, facecolor="y", aspect="equal")
plt.plot(np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle="--")
plt.ylim(0, 1.5)
plt.axis("image") plt.axes([0.3, .4, .3, .3], frameon=True, facecolor="y", aspect="equal")
plt.plot(2+np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle="-")
plt.ylim(0, 15)
plt.axis([2.1, 3.9, 0.5, 1.9])
#axis([xmin, xmax, ymin, ymax])
plt.axes([0.55, .1, .3, .3], frameon=True, facecolor="y", aspect="equal")
plt.plot(4+np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle=":")
plt.ylim(0, 1.5)
plt.axis("off")
#坐标轴的关闭
plt.show()

(3)控制坐标轴刻度的显示(一)

import matplotlib.pyplot as plt
import numpy as np
'''
控制坐标轴刻度的显示的两种方法:
一是调用matplotlib的面向对象的API的Axes.set_xticks()和
Axes.yticks()实例方法,另一种是调用模块pyplot的API,使用函数
setp()设置刻度元素
'''
ax1 = plt.subplot(121)
ax1.set_xticks(range(0, 251, 50))
plt.grid(True, axis="x") ax2 = plt.subplot(122)
ax2.set_xticks([])
plt.grid(True, axis="x") plt.show()

(4)调用函数setp()--------实现刻度值的显示

import matplotlib.pyplot as plt
import numpy as np
'''
控制坐标轴刻度的显示的两种方法:
一是调用matplotlib的面向对象的API的Axes.set_xticks()和
Axes.yticks()实例方法,另一种是调用模块pyplot的API,使用函数
setp()设置刻度元素
'''
ax1 = plt.subplot(221)
plt.setp(ax1.get_xticklabels(), visible=True)
plt.setp(ax1.get_xticklines(), visible=True)
plt.grid(True, axis="x") ax2 = plt.subplot(222)
plt.setp(ax2.get_xticklabels(), visible=True)
plt.setp(ax2.get_xticklines(), visible=False)
plt.grid(True, axis="x")
#刻度线的隐藏
ax3 = plt.subplot(223)
plt.setp(ax3.get_xticklabels(), visible=False)
plt.setp(ax3.get_xticklines(), visible=True)
plt.grid(True, axis="x")
#刻度标签的隐藏
ax4 = plt.subplot(224)
plt.setp(ax4.get_xticklabels(), visible=False)
plt.setp(ax4.get_xticklines(), visible=False)
plt.grid(True, axis="x")
#双隐藏
plt.show()

(5)棉棒图的定制化展示

import matplotlib.pyplot as plt
import numpy as np x = np.linspace(0.5, 2*np.pi, 20)
y = np.random.randn(20) markerline, stemlines, baseline = plt.stem(x, y)
#获得实例,前两个实例的属性值的改变用setp
plt.setp(markerline, color="chartreuse", marker="D")
plt.setp(stemlines, linestyle="-.")
#stemlines是实例列表
baseline.set_linewidth(2)
#基线的位置和线型 plt.show()

(8)控制坐标轴的显示

import matplotlib.pyplot as plt
import numpy as np
'''
spines实现轴的显示
set_ticks_position实现标签的显示
'''
x = np.linspace(-2*np.pi, 2*np.pi, 1000)
y = np.sin(x) ax1 = plt.subplot(221)
ax1.spines["right"].set_color("none")
ax1.spines["top"].set_color("none")
ax1.set_xlim(-2*np.pi, 2*np.pi)
ax1.set_ylim(-1.0, 1.0)
plt.title(r"$a$")
plt.scatter(x, y, marker="+", color="b") ax2 = plt.subplot(222)
ax2.spines["right"].set_color("none")
ax2.spines["top"].set_color("none")
ax2.xaxis.set_ticks_position("bottom")
ax2.set_xlim(-2*np.pi, 2*np.pi)
ax2.set_ylim(-1.0, 1.0)
plt.title(r"$b$")
plt.scatter(x, y, marker="+", color="b") ax3 = plt.subplot(223)
ax3.spines["right"].set_color("none")
ax3.spines["top"].set_color("none")
ax3.yaxis.set_ticks_position("left")
ax3.set_xlim(-2*np.pi, 2*np.pi)
ax3.set_ylim(-1.0, 1.0)
plt.title(r"$c$")
plt.scatter(x, y, marker="+", color="b") ax4 = plt.subplot(224)
ax4.spines["right"].set_color("none")
ax4.spines["top"].set_color("none")
ax4.xaxis.set_ticks_position("bottom")
ax4.yaxis.set_ticks_position("left")
ax4.set_xlim(-2*np.pi, 2*np.pi)
ax4.set_ylim(-1.0, 1.0)
plt.title(r"$d$")
plt.scatter(x, y, marker="+", color="b") plt.show()

matplotlib学习日记(十一)---坐标轴高阶应用的更多相关文章

  1. python学习8—函数之高阶函数与内置函数

    python学习8—函数之高阶函数与内置函数 1. 高阶函数 a. map()函数 对第二个输入的参数进行第一个输入的参数指定的操作.map()函数的返回值是一个迭代器,只可以迭代一次,迭代过后会被释 ...

  2. javascript设计模式学习之三—闭包和高阶函数

    一.闭包 闭包某种程度上就是函数的内部函数,可以引用外部函数的局部变量.当外部函数退出后,如果内部函数依旧能被访问到,那么内部函数所引用的外部函数的局部变量就也没有消失,该局部变量的生存周期就被延续. ...

  3. python学习-41 装饰器 -- 高阶函数

    装饰器:本质就是函数.是为其他函数添加附加功能的. 原则:1.不修改被修饰函数的源代码2.不修改被修饰函数的调用方式 --- 装饰器的知识储备 装饰器=高阶函数+函数嵌套+闭包 高阶函数 1.高阶函数 ...

  4. kotlin学习(7)高阶函数

    高阶函数 以另一个函数作为参数或者返回值的函数被称为高阶函数. 函数类型 //隐式声明(省略了变量类型) val sum = (x:Int, y:Int -> x+y) val action = ...

  5. matplotlib学习日记(十)-共享绘图区域的坐标轴

    (1)共享单一绘图区域的坐标轴 ''' 上一讲介绍了画布的划分,有时候想将多张图放在同一个绘图区域, 不想在每个绘图区域只绘制一幅图形,这时候借助共享坐标轴的方法实现在一个绘图区 绘制多幅图形的目的. ...

  6. matplotlib学习日记(十)-划分画布的主要函数

    (1)函数subplot()绘制网格区域中的几何形状相同的子区布局 import matplotlib.pyplot as plt import numpy as np '''函数subplot的介绍 ...

  7. matplotlib学习日记(九)-图形样式

    (一)刻度线定位器和刻度格式器的使用方法 import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker impor ...

  8. js学习日记-各种宽高总结(配图)

    1.窗口和浏览器 window.innerWidth.window.innerHeight   浏览器内部可用宽高 window.outerWidth.window.outerHeight   浏览器 ...

  9. matplotlib学习日记(八)----完善统计图

    (一)再说legend() import matplotlib.pyplot as plt import numpy as np x = np.arange(0, 2.1, 0.1) y = np.p ...

随机推荐

  1. dubbo源码调试

    1.从github上clone下duboo的源码并checkout tag到2.6.5可以看到如下的结构: 其中all-dubbo的pom如下: 这里会将dubbo的其他项目在package的时候打到 ...

  2. 【mq读书笔记】mq读写分离机制

    mq根据brokerName查找Broker地址的过程 mq根据MessageQueue查找Broker地址的唯一依据是brokerName,同一组Broker(M-S)他们的bokerName相同但 ...

  3. C语言中Linux环境下编译与链接

    编写一个简单的 hello.c 文件,以此为例. 1.编译并链接一个完全包含于一个源文件的C程序. gcc hello.c gcc -Wall hello.c gcc -o hello hello.c ...

  4. 欢天喜地七仙女——UML设计

    这个作业的要求在哪里 作业要求 团队名称 欢天喜地七仙女 团队成员 王玮晗.林鑫宇.黄龙骏.陈少龙.何一山.崔亚明.陆桂莺 这个作业的目标 团队一起绘制UML图 作业正文 如下 其它参考文献 见文末 ...

  5. 色相偏移 HueShift ASE

    色相偏移可以改变颜色色调,unity ASE没有参考UE4写个,原理很简单,将颜色向量绕(1,1,1)旋转,就可以得到不同色调的颜色. https://zhuanlan.zhihu.com/p/677 ...

  6. Netty 搭建 WebSocket 服务端

    一.编码器.解码器 ... ... @Autowired private HttpRequestHandler httpRequestHandler; @Autowired private TextW ...

  7. 使用douban源下载python包

    需求 python默认使用国外源下载依赖包,由于一些其它因素(例如网络差了,国外机器炸了,我们强大的祖国了...)经常导致下载安装失败,so出现了以豆瓣为主的国内下载源 如何使用豆瓣进行下载 豆瓣下载 ...

  8. PyQt学习随笔:自定义Qt事件可以使用的事件类型的常量值范围

    除了<PyQt学习随笔:Qt事件QEvent.type类型常量及其含义资料速查>介绍的Qt已经定义的事件外,Qt还支持自定义事件. 为了方便起见,可以使用 registerEventTyp ...

  9. 代码审计【根据功能点定向审计】BugFree ZSWin重装案例

    (哦对了!这些CMS代码不要安装在服务器上,先不说它们用来代码审计本身就是有漏洞的,而且在网上下载下来,也不能保证没有源码是否被篡改而留有后门,就安装在本地进行代码审计的练习即可) 我们先下载BugF ...

  10. Cookie 和JWT 并存同一项目代码记录

    Cookie管理后台管理,JWT对外提供接口验证 具体官方文档链接 使用 ASP.NET Core 中的特定方案授权 实现思路: 1.添加两种授权方式配置, AddAuthentication 的参数 ...