(一)设置坐标轴的位置和展示形式

(1)向画布中任意位置添加任意数量的坐标轴

'''
通过在画布的任意位置和区域,讲解设置坐标轴的位置和坐标轴的展示形式的实现方法,
与subplot,subplots不同,axes可以完成子区的交错,覆盖和重叠等视图组合
ax(rect, frameon, facecolor)的参数的含义
rect=[left, bottom, width, height]
left------------>左侧边缘距离画布边缘的距离
bottom---------->距离底部画布边缘的距离
width----------->坐标轴的宽度
height---------->坐标轴的高度
left和height--------->画布宽度的归一化距离
bottom和width-------->画布高度的归一化距离
frameon------------>True,绘制坐标轴的四条轴脊
facecolor---------->坐标轴背景的颜色
'''
import matplotlib.pyplot as plt
import numpy as np plt.axes([0.05, 0.7, 0.3, 0.3], frameon=True, facecolor="y", aspect="equal")
plt.plot(np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle="--") plt.axes([0.3, .4, .3, .3], frameon=True, facecolor="y", aspect="equal")
plt.plot(2+np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle="-") plt.axes([0.55, .1, .3, .3], frameon=True, facecolor="y", aspect="equal")
plt.plot(4+np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle=":") plt.show()

(2)函数axis()--------调整已经确定的坐标轴的显示,隐藏和刻度范围

'''
通过在画布的任意位置和区域,讲解设置坐标轴的位置和坐标轴的展示形式的实现方法,
与subplot,subplots不同,axes可以完成子区的交错,覆盖和重叠等视图组合
ax(rect, frameon, facecolor)的参数的含义
rect=[left, bottom, width, height]
left------------>左侧边缘距离画布边缘的距离
bottom---------->距离底部画布边缘的距离
width----------->坐标轴的宽度
height---------->坐标轴的高度
left和height--------->画布宽度的归一化距离
bottom和width-------->画布高度的归一化距离
frameon------------>True,绘制坐标轴的四条轴脊
facecolor---------->坐标轴背景的颜色
'''
import matplotlib.pyplot as plt
import numpy as np plt.axes([0.05, 0.7, 0.3, 0.3], frameon=True, facecolor="y", aspect="equal")
plt.plot(np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle="--")
plt.ylim(0, 1.5)
plt.axis("image") plt.axes([0.3, .4, .3, .3], frameon=True, facecolor="y", aspect="equal")
plt.plot(2+np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle="-")
plt.ylim(0, 15)
plt.axis([2.1, 3.9, 0.5, 1.9])
#axis([xmin, xmax, ymin, ymax])
plt.axes([0.55, .1, .3, .3], frameon=True, facecolor="y", aspect="equal")
plt.plot(4+np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle=":")
plt.ylim(0, 1.5)
plt.axis("off")
#坐标轴的关闭
plt.show()

(3)控制坐标轴刻度的显示(一)

import matplotlib.pyplot as plt
import numpy as np
'''
控制坐标轴刻度的显示的两种方法:
一是调用matplotlib的面向对象的API的Axes.set_xticks()和
Axes.yticks()实例方法,另一种是调用模块pyplot的API,使用函数
setp()设置刻度元素
'''
ax1 = plt.subplot(121)
ax1.set_xticks(range(0, 251, 50))
plt.grid(True, axis="x") ax2 = plt.subplot(122)
ax2.set_xticks([])
plt.grid(True, axis="x") plt.show()

(4)调用函数setp()--------实现刻度值的显示

import matplotlib.pyplot as plt
import numpy as np
'''
控制坐标轴刻度的显示的两种方法:
一是调用matplotlib的面向对象的API的Axes.set_xticks()和
Axes.yticks()实例方法,另一种是调用模块pyplot的API,使用函数
setp()设置刻度元素
'''
ax1 = plt.subplot(221)
plt.setp(ax1.get_xticklabels(), visible=True)
plt.setp(ax1.get_xticklines(), visible=True)
plt.grid(True, axis="x") ax2 = plt.subplot(222)
plt.setp(ax2.get_xticklabels(), visible=True)
plt.setp(ax2.get_xticklines(), visible=False)
plt.grid(True, axis="x")
#刻度线的隐藏
ax3 = plt.subplot(223)
plt.setp(ax3.get_xticklabels(), visible=False)
plt.setp(ax3.get_xticklines(), visible=True)
plt.grid(True, axis="x")
#刻度标签的隐藏
ax4 = plt.subplot(224)
plt.setp(ax4.get_xticklabels(), visible=False)
plt.setp(ax4.get_xticklines(), visible=False)
plt.grid(True, axis="x")
#双隐藏
plt.show()

(5)棉棒图的定制化展示

import matplotlib.pyplot as plt
import numpy as np x = np.linspace(0.5, 2*np.pi, 20)
y = np.random.randn(20) markerline, stemlines, baseline = plt.stem(x, y)
#获得实例,前两个实例的属性值的改变用setp
plt.setp(markerline, color="chartreuse", marker="D")
plt.setp(stemlines, linestyle="-.")
#stemlines是实例列表
baseline.set_linewidth(2)
#基线的位置和线型 plt.show()

(8)控制坐标轴的显示

import matplotlib.pyplot as plt
import numpy as np
'''
spines实现轴的显示
set_ticks_position实现标签的显示
'''
x = np.linspace(-2*np.pi, 2*np.pi, 1000)
y = np.sin(x) ax1 = plt.subplot(221)
ax1.spines["right"].set_color("none")
ax1.spines["top"].set_color("none")
ax1.set_xlim(-2*np.pi, 2*np.pi)
ax1.set_ylim(-1.0, 1.0)
plt.title(r"$a$")
plt.scatter(x, y, marker="+", color="b") ax2 = plt.subplot(222)
ax2.spines["right"].set_color("none")
ax2.spines["top"].set_color("none")
ax2.xaxis.set_ticks_position("bottom")
ax2.set_xlim(-2*np.pi, 2*np.pi)
ax2.set_ylim(-1.0, 1.0)
plt.title(r"$b$")
plt.scatter(x, y, marker="+", color="b") ax3 = plt.subplot(223)
ax3.spines["right"].set_color("none")
ax3.spines["top"].set_color("none")
ax3.yaxis.set_ticks_position("left")
ax3.set_xlim(-2*np.pi, 2*np.pi)
ax3.set_ylim(-1.0, 1.0)
plt.title(r"$c$")
plt.scatter(x, y, marker="+", color="b") ax4 = plt.subplot(224)
ax4.spines["right"].set_color("none")
ax4.spines["top"].set_color("none")
ax4.xaxis.set_ticks_position("bottom")
ax4.yaxis.set_ticks_position("left")
ax4.set_xlim(-2*np.pi, 2*np.pi)
ax4.set_ylim(-1.0, 1.0)
plt.title(r"$d$")
plt.scatter(x, y, marker="+", color="b") plt.show()

matplotlib学习日记(十一)---坐标轴高阶应用的更多相关文章

  1. python学习8—函数之高阶函数与内置函数

    python学习8—函数之高阶函数与内置函数 1. 高阶函数 a. map()函数 对第二个输入的参数进行第一个输入的参数指定的操作.map()函数的返回值是一个迭代器,只可以迭代一次,迭代过后会被释 ...

  2. javascript设计模式学习之三—闭包和高阶函数

    一.闭包 闭包某种程度上就是函数的内部函数,可以引用外部函数的局部变量.当外部函数退出后,如果内部函数依旧能被访问到,那么内部函数所引用的外部函数的局部变量就也没有消失,该局部变量的生存周期就被延续. ...

  3. python学习-41 装饰器 -- 高阶函数

    装饰器:本质就是函数.是为其他函数添加附加功能的. 原则:1.不修改被修饰函数的源代码2.不修改被修饰函数的调用方式 --- 装饰器的知识储备 装饰器=高阶函数+函数嵌套+闭包 高阶函数 1.高阶函数 ...

  4. kotlin学习(7)高阶函数

    高阶函数 以另一个函数作为参数或者返回值的函数被称为高阶函数. 函数类型 //隐式声明(省略了变量类型) val sum = (x:Int, y:Int -> x+y) val action = ...

  5. matplotlib学习日记(十)-共享绘图区域的坐标轴

    (1)共享单一绘图区域的坐标轴 ''' 上一讲介绍了画布的划分,有时候想将多张图放在同一个绘图区域, 不想在每个绘图区域只绘制一幅图形,这时候借助共享坐标轴的方法实现在一个绘图区 绘制多幅图形的目的. ...

  6. matplotlib学习日记(十)-划分画布的主要函数

    (1)函数subplot()绘制网格区域中的几何形状相同的子区布局 import matplotlib.pyplot as plt import numpy as np '''函数subplot的介绍 ...

  7. matplotlib学习日记(九)-图形样式

    (一)刻度线定位器和刻度格式器的使用方法 import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker impor ...

  8. js学习日记-各种宽高总结(配图)

    1.窗口和浏览器 window.innerWidth.window.innerHeight   浏览器内部可用宽高 window.outerWidth.window.outerHeight   浏览器 ...

  9. matplotlib学习日记(八)----完善统计图

    (一)再说legend() import matplotlib.pyplot as plt import numpy as np x = np.arange(0, 2.1, 0.1) y = np.p ...

随机推荐

  1. JQuery案例:折叠菜单

    折叠菜单(jquery) <html> <head> <meta charset="UTF-8"> <title>accordion ...

  2. 电脑装MySQL免安装版配置失败提示系统错误2怎么解决?

    一·准备工作 我下载安装的版本是:mysql-8.0.16-winx64(免安装版) 下载地址:https://www.mysql.com/ (官网地址)https://cdn2.lmonkey.co ...

  3. 【mq读书笔记】mq索引文件刷盘

    索引文件的刷盘并不是采取定时刷盘机制,而是每更新一次索引文件就会将上一次的改动刷写到磁盘. 同步刷盘: GroupCommitRequest将被提交到GroupCommitService线程,Grou ...

  4. 第一次个人作业 - 软件工程与UML

    这个作业属于哪个课程 https://edu.cnblogs.com/campus/fzzcxy/2018SE1/ 这个作业要求在哪里 https://edu.cnblogs.com/campus/f ...

  5. 前端vue小知识点

    前端转后端Json数据 this.orderList=JSON.parse(resp.parameter)

  6. c++11-17 模板核心知识(十二)—— 模板的模板参数 Template Template Parameters

    概念 举例 模板的模板参数的参数匹配 Template Template Argument Matching 解决办法一 解决办法二 概念 一个模板的参数是模板类型. 举例 在c++11-17 模板核 ...

  7. Why系统:0.1 + 0.2 != 0.3

    为了知道更多一点,打算自己来一个why系列. 面试官:同学, 请问 0.1 + 0.2 等于多少 同学:不等于0.3, 因为精度问题 面试官:能更深入的说一下嘛 同学:...... 上面的同学,就是曾 ...

  8. TextClip的list和search方法报错:UnicodeDecodeError: utf-8 codec canot decode byte 0xb7 in position 8

    ☞ ░ 前往老猿Python博文目录 ░ 由于moviepy对多语言环境支持存在一些问题,因此在执行TextClip.list('font')和TextClip.search('GB','font') ...

  9. moviepy音视频剪辑:使用VideoFileClip、AudioFileClip和write_videofile、write_audiofile进行音视频的加载和输出

    专栏:Python基础教程目录 专栏:使用PyQt开发图形界面Python应用 专栏:PyQt入门学习 老猿Python博文目录 老猿学5G博文目录 一.概述 在本地进行音视频处理时,首先要从视频文件 ...

  10. Nday漏洞组合拳修改全校师生密码

    很久以前写的文章了,发一下:) 本文是我真实的挖洞经历.撰写本文时相关学校已修复漏洞,相关漏洞也提交给了教育漏洞平台.纯粹是挖洞经验的总结和技术分享,由于敏感信息比较多,所以文章里面很多图片已经面目全 ...