★append方法可以很方便地拼接两个DataFrame
 df1.append(df2)

 >    A  B
> 1 A1 B1
> 2 A2 B2
> 3 A3 B3
> 4 A4 B4
★但数据量大时生成DataFrame,应避免使用append方法
因为:
       与python列表中的append和extend方法不同的是pandas的append方法不会改变原来的对象,而是创建一个新的对象。当然,这样的话会使效率变低而且会占用更多内存,所以如果你有很多数据需要append,建议使用列表,然后传给DataFrame。
       建议直接用空列表依次装好各列的数据,再统一生成总的dataframe表,如下例所示。
 
 import pandas as pd
import numpy as np
from datetime import datetime # 模拟生成较大批次量的数据
df_list = [pd.DataFrame({
'a': [np.random.rand() for _ in range(20000)],
'b': [np.random.rand() for _ in range(20000)]
}) for i in range(800)] # %% 第一种方式(运行时间最长——1分钟,内存占用一般)
start1 = datetime.now()
res1 = pd.DataFrame()
for df in df_list:
res1 = res1.append(df)
print('append耗时:%s秒' % (datetime.now() - start1)) # %% 第二种方式(运行时间相对第一种少一些——46秒,但内存接近溢出)
start2 = datetime.now()
dict_list = [df.to_dict() for df in df_list]
combine_dict = {}
i = 0
for dic in dict_list:
length = len(list(dic.values())[0])
for idx in range(length):
combine_dict[i] = {k: dic[k][idx] for k in dic.keys()}
i += 1
res2 = pd.DataFrame.from_dict(combine_dict, 'index')
print('dict合并方式耗时:%s秒' % (datetime.now() - start2)) # %% 第三种方式:list装好所有值(运行时间最短——4秒多,内存占用低)
start3 = datetime.now()
columns = ['a', 'b']
a_list = []
b_list = [] for df in df_list:
a_list.extend(df['a'])
b_list.extend(df['b'])
res3 = pd.DataFrame({'a': a_list, 'b': b_list})
print('list装好所有值方式耗时:%s秒' % (datetime.now() - start3))

【原创】大数据量时生成DataFrame避免使用效率低的append方法的更多相关文章

  1. 大数据量时Mysql的优化

    (转自网络) 如今随着互联网的发展,数据的量级也是撑指数的增长,从GB到TB到PB.对数据的各种操作也是愈加的困难,传统的关系性数据库已经无法满足快速查询与插入数据的需求.这个时候NoSQL的出现暂时 ...

  2. 大数据量时 Mysql LIMIT如何正确对其进行优化(转载)

    以下的文章主要是对Mysql LIMIT简单介绍,我们大家都知道LIMIT子句一般是用来限制SELECT语句返回的实际行数.LIMIT取1个或是2个数字参数,如果给定的是2个参数,第一个指定要返回的第 ...

  3. Android, BaseAdapter 处理大数据量时的优化

    Android优化 最常见的就是ListView, Gallery, GridView, ViewPager 的大数据优化  图片优化  访问网络的优化优化的原则: 数据延迟加载  分批加载  本地缓 ...

  4. .net WebService 大数据量时性能的提高

    1.直接返回DataSet对象 [WebMethod(Description = "直接返回DataSet对象")] public DataSet GetUserListDateS ...

  5. Kendo UI中TreeView 放入tabstrip中,大数据量时超过边框的解决方案。

    参考http://www.kendoui.com/forums/ui/tabstrip/tabstip-with-treeview-treeview-breaking-out-of-tabstrip. ...

  6. 【转载】大数据量传输时配置WCF的注意事项

    WCF传输数据量的能力受到许多因素的制约,如果程序中出现因需要传输的数据量较大而导致调用WCF服务失败的问题,应注意以下配置: 1.MaxReceivedMessageSize:获取或设置配置了此绑定 ...

  7. 大数据量传输时配置WCF的注意事项

    原文:大数据量传输时配置WCF的注意事项 WCF传输数据量的能力受到许多因素的制约,如果程序中出现因需要传输的数据量较大而导致调用WCF服务失败的问题,应注意以下配置: 1.MaxReceivedMe ...

  8. WCF大数据量传输配置

    WCF传输数据量的能力受到许多因素的制约,如果程序中出现因需要传输的数据量较大而导致调用WCF服务失败的问题,应注意以下配置: 1.MaxReceivedMessageSize:获取或设置配置了此绑定 ...

  9. SQL Server 使用bcp进行大数据量导出导入

    转载:http://www.cnblogs.com/gaizai/archive/2010/04/17/1714389.html SQL Server的导出导入方式有: 在SQL Server中提供了 ...

随机推荐

  1. ThreadFactory 线程池工厂

    import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class Thr ...

  2. 解决tomcat闪退问题

    https://blog.csdn.net/zh2nd/article/details/79068680 转载此博客链接内容,非常感谢博主 本文参考CSDN博主 哈克沃德.的<Tomcat8启动 ...

  3. Domain Model

    VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来. DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的 ...

  4. Hadoop计数器

    1. MapReduce计数器是什么 计数器是用来记录Job的执行进度和状态的,其作用类似于日志.我们可以在程序的某个位置插入计数器,记录数据或进度的变化情况. 2. MapReduce计数器能做什么 ...

  5. 解决Hadoop无法加载本地库的问题: Unable to load native-hadoop library for your platform

    今天跑Hadoop程序时一直提示我无法加载本地库,然后就直接退出运行了,如下图所示. 原因是由于Apache提供的Hadoop本地库是32位的,而在64位的服务器上就会有问题,因此需要自己编译64位的 ...

  6. 粗看ES6之变量

    标签: javascript var定义变量面临的问题 可以重复定义 无法限制变量不可修改 无块级作用域 ES6变量定义升级 新增let定义变量 新增const定义常量 let特性 有块级作用域 不可 ...

  7. Java调用webservice接口方法(SOAP message、xfire、axis)

    webservice的 发布一般都是使用WSDL(web service descriptive language)文件的样式来发布的,在WSDL文件里面,包含这个webservice暴露在外面可供使 ...

  8. C# 常见的字符串操作

    例1: 遍历字符串中的每一个字符: string src = "aa-b - c-a - d-e- d-e- a- a-b-cc"; foreach(char c in src) ...

  9. CAS登录认证的简单介绍

    参考博客:  https://www.jianshu.com/p/8daeb20abb84 下面是CAS最基本的协议过程: 下面是CAS Web工作流程图: 名词解释 Ticket Grangting ...

  10. Check Point R80 Security Management

    平台: CentOS 类型: 虚拟机镜像 软件包: Security Management basic software security 服务优惠价: 按服务商许可协议 云服务器费用:查看费用 立即 ...