机器学习框架ML.NET学习笔记【1】基本概念与系列文章目录
一、序言
微软的机器学习框架于2018年5月出了0.1版本,2019年5月发布1.0版本。期间各版本之间差异(包括命名空间、方法等)还是比较大的,随着1.0版发布,应该是趋于稳定了。之前在园子里也看到不少相关介绍的文章,对我的学习提供了不少帮助。由于目前资料不是很丰富,所以学习过程中也走了不少弯路,本系列的文章主要记录我学习过程中的一些心得体会,并对一些细节会做详细的解释,希望能为机器学习零基础的同学提供一些帮助。(C#零基础可不行)
二、基本概念
1、什么是机器学习?
定义:一个电脑程序要完成任务(T),如果电脑获取的关于T的经验(E)越多就表现(P)得越好,那么我们就可以说这个程序‘学习’了关于T的经验。
简单解释什么叫“机器的学习”:如果输入的经验越多表现的越好,这就叫“学习”。举个例子:传统的程序逻辑是基于算法的,在算法不变的情况下,程序就是运行100年能力也不会有提升,但机器学习是基于数据(样本)的,在算法不变的情况下,累计的有效数据越多,程序表现能力就越强。
2、通过机器学习解决问题和传统算法解决问题的区别
需要解决的问题:会议室进来一位男生,请他站在摄像头前面,通过一个程序评价一下这位男生身材是否很好。
(1)传统解决方案
首先我们分析要判断一个人身材是否很好,主要的判断特征包括:身高、体重、三围等等,然后通过一个衡量算法(比如BMI)进行计算,流程如下:
(2)机器学习算法
机器学习是依赖样本数据的,所以解决这个问题的思路是这样的:
①首先你得上街去收集数据,询问你采访对象的身高、体重、三围数据,然后根据你的经验给他一个评判,形成下表:
②对收集到的数据进行训练,形成模型,然后通过模型对要判断的对象进行评判。流程如下:
小结:通过这个问题的解决,感觉通过机器学习来解决问题比传统方法麻烦多了,是的,对于身材判断这样的问题,人类可以很简单找到一个逻辑分析的方法,所以通过逻辑算法解决就比较方便,但有时候很多事情我们人类是很容易处理的,但我们却不知道其中的逻辑,比如:判断一张图片是否是18+图片,判断一片论文是否写得很好,判断一个人是否长得漂亮等等。这些问题人类很轻松就能处理,但无法总结出其中的规律并交给机器去执行,这时候机器学习算法就可以派上用场了。
三、机器学习的流程
机器学习的流程如下:
数据准备 -> 建模 -> 训练 -> 评估 -> 应用
在实际应用时,由于训练的过程可能时间比较长,所以我们会分两个阶段进行:
1、学习阶段:数据准备 -> 建模 -> 训练 -> 评估 -> 保存模型
2、消费阶段:读取模型 -> 应用
评估的过程就是对模型的检验,我们一般会把样本数据随机分成两份,其中一部分用来学习,另一部分用来检验模型效果,判断一下我们的模型能力。
以上是涉及到机器学习的有些最基础的理论知识,下面几篇文章会由浅入深介绍ML.NET的一些应用。
系列文章目录:
机器学习框架ML.NET学习笔记【1】基本概念
机器学习框架ML.NET学习笔记【6】TensorFlow图片分类
资源下载:
项目源码:https://github.com/seabluescn/Study_ML.NET
资源文件:https://gitee.com/seabluescn/ML_Assets
(由于资源文件较大,所以放在码云平台提供下载)
机器学习框架ML.NET学习笔记【1】基本概念与系列文章目录的更多相关文章
- 机器学习框架ML.NET学习笔记【4】多元分类之手写数字识别
一.问题与解决方案 通过多元分类算法进行手写数字识别,手写数字的图片分辨率为8*8的灰度图片.已经预先进行过处理,读取了各像素点的灰度值,并进行了标记. 其中第0列是序号(不参与运算).1-64列是像 ...
- 机器学习框架ML.NET学习笔记【3】文本特征分析
一.要解决的问题 问题:常常一些单位或组织召开会议时需要录入会议记录,我们需要通过机器学习对用户输入的文本内容进行自动评判,合格或不合格.(同样的问题还类似垃圾短信检测.工作日志质量分析等.) 处理思 ...
- 机器学习框架ML.NET学习笔记【2】入门之二元分类
一.准备样本 接上一篇文章提到的问题:根据一个人的身高.体重来判断一个人的身材是否很好.但我手上没有样本数据,只能伪造一批数据了,伪造的数据比较标准,用来学习还是蛮合适的. 下面是我用来伪造数据的代码 ...
- 机器学习框架ML.NET学习笔记【5】多元分类之手写数字识别(续)
一.概述 上一篇文章我们利用ML.NET的多元分类算法实现了一个手写数字识别的例子,这个例子存在一个问题,就是输入的数据是预处理过的,很不直观,这次我们要直接通过图片来进行学习和判断.思路很简单,就是 ...
- 机器学习框架ML.NET学习笔记【6】TensorFlow图片分类
一.概述 通过之前两篇文章的学习,我们应该已经了解了多元分类的工作原理,图片的分类其流程和之前完全一致,其中最核心的问题就是特征的提取,只要完成特征提取,分类算法就很好处理了,具体流程如下: 之前介绍 ...
- 机器学习框架ML.NET学习笔记【7】人物图片颜值判断
一.概述 这次要解决的问题是输入一张照片,输出人物的颜值数据. 学习样本来源于华南理工大学发布的SCUT-FBP5500数据集,数据集包括 5500 人,每人按颜值魅力打分,分值在 1 到 5 分之间 ...
- 机器学习框架ML.NET学习笔记【8】目标检测(采用YOLO2模型)
一.概述 本篇文章介绍通过YOLO模型进行目标识别的应用,原始代码来源于:https://github.com/dotnet/machinelearning-samples 实现的功能是输入一张图片, ...
- 机器学习框架ML.NET学习笔记【9】自动学习
一.概述 本篇我们首先通过回归算法实现一个葡萄酒品质预测的程序,然后通过AutoML的方法再重新实现,通过对比两种实现方式来学习AutoML的应用. 首先数据集来自于竞赛网站kaggle.com的UC ...
- ML.NET学习笔记 ---- 系列文章
机器学习框架ML.NET学习笔记[1]基本概念与系列文章目录 机器学习框架ML.NET学习笔记[2]入门之二元分类 机器学习框架ML.NET学习笔记[3]文本特征分析 机器学习框架ML.NET学习笔记 ...
随机推荐
- Dubbo注册中心的四种配置方式详解
Dubbo目前支持4种注册中心,(multicast,zookeeper,redis,simple) 推荐使用Zookeeper注册中心. 一.Multicast注册中心 不需要启动任何中心节点,只要 ...
- PG degraded实验
1. 创建一个文件,并把该文件作为对象放到集群中: [root@node1 ~]# echo "this is test! " >>test.txt [root@nod ...
- JBOSS AS 5.X/6.X 反序列化漏洞(CVE-2017-12149)复现
本机IP:192.168.220.145 靶机IP:192.168.220.139,版本为JBOSS AS 6.1.0 Final 首先访问目标地址,http://192.168.220.139:80 ...
- C#自定义控件 ————进度条
先看看样式 一个扇形的进度条 对外公开的方法和属性 事件 value_change;//值改变时触发的事件progress_finshed;//进度条跑完时触发的事件 属性 Max_value//获取 ...
- 【问题】Expandable数据集的定义的正确方法,TabActivity弃用替代,Gallery替代,imageswitcher
Expandable 问题: http://www.cnblogs.com/xingyyy/p/3389611.html 扩展阅读:http://blog.csdn.net/lmj623565791/ ...
- [51nod1106]质数检测
解题关键: 根据质数的定义,在判断一个数n是否是质数时,我们只要用1至n-1去除n,看看能否整除即可.但我们有更好的办法.先找一个数m,使m的平方大于n,再用<=m的质数去除n(n即为被除数), ...
- 使用MySQL客户端登录Ensemble数据库查询相关信息
Ensemble公共MySQL数据库 对于大量数据和更详细的分析,Ensemble的MySQL服务器ensembldb.ensembl.org,useastdb.ensembl.org或asiadb. ...
- supervisor启动worker源码分析-worker.clj
supervisor通过调用sync-processes函数来启动worker,关于sync-processes函数的详细分析请参见"storm启动supervisor源码分析-superv ...
- linux c段错误分析方法
from:http://blog.csdn.net/adaptiver/article/details/37656507 一. 段错误原因分析 1 使用非法的指针,包括使用未经初始化及已经释放的指针( ...
- debian系Linux中文系统目录改为英文目录的解决方法
之前给笔记本装的kali是英文版,系统安装好了后再修改系统语言为中文,或者直接就用英文系统,也是可以的. 后来笔记本的硬盘坏掉了,换ssd,然后安装kali的中文版,中文是方便,但是进去后就不爽了. ...