看到Max Welling教授主页上有不少学习notes,收藏一下吧,其最近出版了一本书呢还,还没看过。

http://www.ics.uci.edu/~welling/classnotes/classnotes.html

Statistical Estimation [ps]
- bayesian estimation
- maximum a posteriori (MAP) estimation
- maximum likelihood (ML) estimation
- Bias/Variance tradeoff & minimum description length (MDL)

Expectation Maximization (EM) Algorithm [ps]
-
 detailed derivation plus some examples

Supervised Learning (Function Approximation) [ps]
- mixture of experts (MoE)
- cluster weighted modeling (CWM)

Clustering [ps]
- mixture of gaussians (MoG)
- vector quantization (VQ) with k-means.

Linear Models [ps]
- factor analysis (FA)
- probabilistic principal component analysis (PPCA)
- principal component analysis (PCA)

Independent Component Analysis (ICA) [ps]
- noiseless ICA
- noisy ICA
- variational ICA

Mixture of Factor Analysers (MoFA) [ps]
- derivation of learning algorithm

Hidden Markov Models (HMM) [ps]
- viterbi decoding algorithm
- Baum-Welch learning algorithm

Kalman Filters (KF) [ps]
- kalman filter algorithm (very detailed derivation)
- kalman smoother algorithm (very detailed derivation)

Approximate Inference Algorithms [ps]
- variational EM
- laplace approximation
- importance sampling
- rejection sampling
- markov chain monte carlo (MCMC) sampling
- gibbs sampling
- hybrid monte carlo sampling (HMC)

Belief Propagation (BP) [ps]
- Introduction to BP and GBP: powerpoint presentation [ppt]
- converting directed acyclic graphical models (DAG) into junction trees (JT)
- Shafer-Shenoy belief propagation on junction trees
- some examples

Boltzmann Machine (BM) [ps]
- derivation of learning algorithm

Generative Topographic Mapping (GTM) [ps]
- derivation of learning algorithm

Introduction to Kernel Methods: powerpoint presentation [ppt]

Kernel Principal Components Analysis [pdf]

Kernel Canonical Correlation Analysis [pdf]

Kernel Support Vector Machines [pdf]

Kernel Ridge-Regression [pdf]

Kernel Support Vector Regression [pdf]

Convex Optimization [pdf]
A brief introduction based on Stephan Boyd’s book, chapter 5.

Fisher Linear Discriminant Analysis [pdf]

machine learning学习笔记的更多相关文章

  1. [Machine Learning]学习笔记-Logistic Regression

    [Machine Learning]学习笔记-Logistic Regression 模型-二分类任务 Logistic regression,亦称logtic regression,翻译为" ...

  2. Machine Learning 学习笔记

    点击标题可转到相关博客. 博客专栏:机器学习 PDF 文档下载地址:Machine Learning 学习笔记 机器学习 scikit-learn 图谱 人脸表情识别常用的几个数据库 机器学习 F1- ...

  3. [Python & Machine Learning] 学习笔记之scikit-learn机器学习库

    1. scikit-learn介绍 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上.值得一提的是,scikit-learn最 ...

  4. Machine Learning 学习笔记1 - 基本概念以及各分类

    What is machine learning? 并没有广泛认可的定义来准确定义机器学习.以下定义均为译文,若以后有时间,将补充原英文...... 定义1.来自Arthur Samuel(上世纪50 ...

  5. Coursera 机器学习 第6章(上) Advice for Applying Machine Learning 学习笔记

    这章的内容对于设计分析假设性能有很大的帮助,如果运用的好,将会节省实验者大量时间. Machine Learning System Design6.1 Evaluating a Learning Al ...

  6. [Machine Learning]学习笔记-线性回归

    模型 假定有i组输入输出数据.输入变量可以用\(x^i\)表示,输出变量可以用\(y^i\)表示,一对\(\{x^i,y^i\}\)名为训练样本(training example),它们的集合则名为训 ...

  7. 吴恩达Machine Learning学习笔记(一)

    机器学习的定义 A computer program is said to learn from experience E with respect to some class of tasks T ...

  8. Machine Learning 学习笔记 01 Typora、配置OSS、导论

    Typora 安装与使用. Typora插件. OSS图床配置. 机器学习导论. 机器学习的基本思路. 机器学习实操的7个步骤

  9. Machine Learning 学习笔记2 - linear regression with one variable(单变量线性回归)

    一.Model representation(模型表示) 1.1 训练集 由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y) ...

随机推荐

  1. 转换Excel格式

    做一个功能需要将excel2003格式转成2007的格式,代码如下 需要引用office的microsoft.office.interop.excel.dll var app = new Micros ...

  2. 多线程编程_CountDownLatch

    CountDownLatch是JAVA提供在java.util.concurrent包下的一个辅助类,可以把它看成是一个计数器,其内部维护着一个count计数,只不过对这个计数器的操作都是原子操作,同 ...

  3. mysql忘记密码时,重新修改密码

    错误描述 1045 access denied for user 'root'@'localhost' using password yes 1045 access denied for user ' ...

  4. cpp 学习笔记

    1.C++中模仿gets是  getline(cin, string object) #include <bits/stdc++.h> #define IOS ios::sync_with ...

  5. Java学习第十六天

    1:List的子类(掌握) (1)List的子类特点 ArrayList: 底层数据结构是数组,查询快,增删慢 线程不安全,效率高 Vector: 底层数据结构是数组,查询快,增删慢 线程安全,效率低 ...

  6. vue学习笔记 vue安装

    一.安装步骤:(用cmd命令用管理身份安装比较顺利) 1.安装node,安装后可以输入npm -v 查看版本,升级npm可用 cnpm install npm -g 2.安装vue 输入cnpm in ...

  7. weblogic 10.3.5重置密码

    weblogic 10.3.5重置密码   热度1,609 ℃  时间:2013-12-26 10:26  分类:middleware  评论数:0 条 0    weblogic默认验证密码机制:如 ...

  8. C#遍历匿名对象的所有属性、value

    Object obj = ,pwd=" }; //遍历匿名对象 foreach (System.Reflection.PropertyInfo p in obj.GetType().GetP ...

  9. mapreduce总结

    一.mapreduce简介 MapReduce是一种分布式计算模型,是hadoop的核心组件之一,是Google提出的,主要用于搜索领域,解决海量数据的计算问题. MR有两个阶段组成:Map和Redu ...

  10. Hibernate课程 初探多对多映射3-1 课程总结

    如何通过添加中间表实现多对多? 1 在双方实体中添加一个保存对方的集合. 2 在双方映射文件中 使用<set>和<many-to-many>元素进行关联关系配置(注意此处)