题目传送门

题目描述:给你一个p/q,让你求在b进制下,这个小数是不是有限小数。

思路:

先来膜拜一个大神的博客,如何求小数的二进制表达,(感谢博主肘子zhouzi)。然后小数的其他进制表达也一样。

而分数的转化,比如1/6转化成3进制,看图 ↓ 。

其实就是将1/6不断乘以3,然后丢掉整数部分,如果我们不看丢掉整数部分这个环节,就是把1/6不断乘以3看看最后能不能整除就好了,如果有限的话,肯定会得到((b)^n))%q=0,b的某一次幂可以整除q,就代表是有限。(感谢薛佬帮我理解!!)

那么一个朴素的想法,就是,n从1一直加上去,找到一个可以整除的,但问题是 证有不证无,我们无法保证n到几退出循环,所以要改进思路。

其实b^n整除q的过程,其实就是b^n的因子和q的因子不断约分的过程,如果约分到最后,q还剩下一个b中没有的因数,则说明无法整除。  那就是每一次都用q除去gcd(q,b),这样消耗q消耗到最后,判断得到的数是不是1,是1则代表可以整除,不是1则代表  用b没法约分q了,不能整除。思路就是这样

但代码中有不少细节要注意。

#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<bitset>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b)
{
if(a%b==0)return b;
else return gcd(b,a%b);
} //辗转相除法求两个数的最大公因数
int main()
{
int n;
cin>>n;
while(n--)
{
ll p,q,b;
//cin>>p>>q>>b; 超时
scanf("%I64d%I64d%I64d",&p,&q,&b); //cf读入longlong类型只能用 I64%
if(p==0)
{
printf("Finite\n");
}else
{
q/=gcd(p,q);//约分
ll g;
while(g=gcd(q,b),g!=1)
{
while(q%g==0)//由于可能出现q=10000000000 g=2的情况 这样子多次调用gcd会浪费时间 所以在这里优化一下
q=q/g;
}
if(q==1){ // q最后如果为 1 则用若干个b把q消耗掉了 即b的若干次方 可以整除 q
printf("Finite\n");
}else{
printf("Infinite\n");
}
}
}
}
C. Finite or not?
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given several queries. Each query consists of three integers pp, qq and bb. You need to answer whether the result of p/qp/q in notation with base bb is a finite fraction.

A fraction in notation with base bb is finite if it contains finite number of numerals after the decimal point. It is also possible that a fraction has zero numerals after the decimal point.

Input

The first line contains a single integer nn (1≤n≤1051≤n≤105) — the number of queries.

Next nn lines contain queries, one per line. Each line contains three integers pp, qq, and bb (0≤p≤10180≤p≤1018, 1≤q≤10181≤q≤1018, 2≤b≤10182≤b≤1018). All numbers are given in notation with base 1010.

Output

For each question, in a separate line, print Finite if the fraction is finite and Infinite otherwise.

Examples
input
Copy
2
6 12 10
4 3 10
output
Copy
Finite
Infinite
input
Copy
4
1 1 2
9 36 2
4 12 3
3 5 4
output
Copy
Finite
Finite
Finite
Infinite
Note

612=12=0,510612=12=0,510

43=1,(3)1043=1,(3)10

936=14=0,012936=14=0,012

412=13=0,13

CodeForces - 984C——Finite or not?分数整除问题(数论,gcd)的更多相关文章

  1. CodeForces 984C Finite or not?

    http://codeforces.com/problemset/problem/984/C Time limit    1000 msMemory limit    262144 kB 题目 You ...

  2. codeforces 983A Finite or not?

    题意: 判断一个分数在某一进制下是否为无限小数. 思路: 首先把这个分数约分,然后便是判断. 首先,一个分数是否为无限小数,与分子是无关的,只与分母有关. 然后,再来看看10进制的分数,可化为有限小数 ...

  3. CF 984C Finite or not? (数论)

    CF 984C Finite or not? (数论) 给定T(T<=1e5)组数据,每组数据给出十进制表示下的整数p,q,b,求问p/q在b进制意义下是否是有限小数. 首先我们先把p/q约分一 ...

  4. CF984 C. Finite or not?【数论/GCD】

    [链接]:CF [题意]:n组样例,对于每组样例,给你三个数p q b,问你p/q在b进制下是不是一个有限小数,是的话输出Finite,否则输出Infinite. [分析]:b的过程是对q约分,那么只 ...

  5. Codeforces Round #276 (Div. 2)A. Factory(数论)

    这道题可以暴力的一直按要求的方法去做,做1000000次还不能整除m就认为永远不能整除m了(m不超过100000,循环1000000次比较安全了已经).这种方法可以AC. 下面深入的分析一下到底循环多 ...

  6. Codeforces - 1114C - Trailing Loves (or L'oeufs?) - 简单数论

    https://codeforces.com/contest/1114/problem/C 很有趣的一道数论,很明显是要求能组成多少个基数. 可以分解质因数,然后统计各个质因数的个数. 比如8以内,有 ...

  7. Codeforces Round #554 (Div. 2) C.Neko does Maths (gcd的运用)

    题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给定两个正整数a,b,其中(1<=a,b<=1e9),求一个正整数k(0&l ...

  8. CodeForces 689C Mike and Chocolate Thieves (二分+数论)

    Mike and Chocolate Thieves 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/G Description ...

  9. Codeforces 475D CGCDSSQ 求序列中连续数字的GCD=K的对数

    题目链接:点击打开链接 #include <cstdio> #include <cstring> #include <algorithm> #include < ...

随机推荐

  1. MSSQL 日期查询 包含NULL值

    方一: 以下做法保证数据里面没有NULL值 '') '') '') '') exec sp_executesql N'select ide_code as ''系统编号'',name as ''申请专 ...

  2. SpringBoot12 QueryDSL02之利用QueryDSL实现多表关联查询

    1 业务需求 有的系统业务逻辑比较复杂,存在着多表关联查询的的情况,查询的内容不仅仅是单张表的的内容而是多张表的字段组合而成的,直接使用SplringDataJPA实现是比较复杂的,但是如果使用Que ...

  3. Opengl创建机器人手臂代码示例

    /*******************************************************robot.cpp*基于opengl的机械手臂示例代码*s:机械臂逆时针旋转*S:机械臂 ...

  4. dpdk中uio技术

    总结一下dpdk的uio技术 一:什么是uio技术 UIO(Userspace I/O)是运行在用户空间的I/O技术,Linux系统中一般的驱动设备都是运行在内核空间,而在用户空间用应用程序调用即可, ...

  5. Linux 大页面使用与实现简介(转)

    引言 随着计算需求规模的不断增大,应用程序对内存的需求也越来越大.为了实现虚拟内存管理机制,操作系统对内存实行分页管理.自内存“分页机制”提出之始,内存页面的默认大小便被设置为 4096 字节(4KB ...

  6. Luogu 1979 [NOIP2013] 华容道

    要优先安排历年NOIP题 考虑到要移动,肯定要先把空的格子移动到起点旁边,所以我们对于每一个询问都先bfs一次求出把空格移到起点的四个位置的最短路,而且要保证不能移动起点的方块. 只有空的格子在一个格 ...

  7. Python程序设计8——网络编程

    Python是一个很强大的网络编程工具,python内有很多针对场景网络协议的库,在库顶部可以获得抽象层,这样就可以集中精力在程序的逻辑处理上,而不是停留在网络实现的细节中. 1 少数几个网络设计模块 ...

  8. [坑]Linux MySQL环境表名默认区分大小写

    不区分大小写设置 1.用ROOT登录,修改/etc/my.cnf 2.在[mysqld]下加入一行:lower_case_table_names=1 3.重新启动数据库即可 systemctl res ...

  9. Zoey.Dapper--Dapper扩展之把SQL语句放到文件中

    介绍 不知道大家在用Dapper的时候SQL语句是写到哪的,目前看网上的例子都是写到类里面的. 此项目的目的是把SQL语句放到文件(xml)中 目前只是初步版本,只是说明了意图,后面会持续完善和优化 ...

  10. ABP框架应用-MySQL数据库集成

    1.  框架以外依赖包引入 1.1.  Pomelo.EntityFrameworkCore.MySql 1.2.  Pomelo.EntityFrameworkCore.MySql.Design 2 ...