1.什么是直接选择排序?

  直接选择排序(Straight Select Sort)是一种简单的排序方法,它的基本思想是:通过n-i次关键字之间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换位置。

  时间复杂度O(n2)

  在排序时找到合适的关键字再做交换,并且只移动一次。
  

public class Test1{
public static void selectSort(int[] arr){
for(int i=0;i<arr.lenght;i++){
for(int j=i+1;j<arr.length;j++){
if(arr[i]>arr[j])//找到后面的元素比前面的小,就交换
swap(arr,i,j);
}
}
}
private static void swap(int[] arr,int x,int y){
int temp=arr[x];
arr[x]=arr[y];
arr[y]=temp;
}
public static void main(String[] args){
int[] a={4,2,1,6,0,-5,1};
int i;
selectSort(a);
for(i=0;i<7;i++)
System.out.print(a[i]);
}
}

栗子:排序算法中,比较次数与初始序列无关的排序方法有哪些?D

  A.希尔排序

  B.快速排序

  C.堆排序

  D.选择排序

2.堆排序

  时间复杂度为O(nlogn),不稳定排序

  堆是一个完全二叉树,树中每一个结点对应于原始数据的一个记录,并且每个结点应满足以下条件:非叶结点的数据大于或等于其左右孩子结点的数据(大顶堆)

  若是按从小到大的顺序排序,则要求非叶结点的数据小于或等于其左右孩子结点的数据(小顶堆)

  由堆的定义可以看出,其根结点为最大值,堆排序就是利用这一特性进行的。

  堆的存储

  一般都用数组来表示堆,i 结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。

  关于二叉树的一个性质:

  如果对于一棵有n个结点的完全二叉树,对于任一结点 i有:

  (1)如果i=1,则结点 i 是二叉树的根,无双亲;如果i>1,则其双亲是结点 i/2

  (2)如果 2i>n,则结点 i 无左孩子(结点i是叶子结点),否则其左孩子是结点2i;

  (3)如果2i+1>n,则结点 i 无右孩子,否则其右孩子是结点2i+1;

  堆排序的大致过程包括两个阶段:

  (1)将无序的数据构成堆(即用无序的数据生成满足堆定义的完全二叉树)

  (2)利用堆排序(即用上一步生成的堆输出有序数据)

  首先把无序数据构成堆

    

//构成堆
public static void HeapAdjust(int[] a,int s,int n){
int j,t;
while(2*s+1<n){//第s个结点有右子树
j=2*s+1;//左子树
if((j+1)<n){
if(a[j]<a[j+1])//如果左子树小于右子树,则需要比较右子树和s结点
j++;//序号加1,指向右子树
}
if(a[s]<a[j]){//如果s结点小于它的右子树,就进行交换
t=a[s];
a[s]=a[j];
a[j]=t;
s=j;//之前的堆被破坏了,需要调整
}
else{//比较左右孩子均大则堆未被破坏,不需要调整
break;
}
}
}

  

  然后,每次将最后的数据(37)与最上面的数据(92)交换顺序,然后把把交换后的最上面的数据(92)输出,由于交换后肯定不满足堆了,就再重新构成堆。接下来接着进行交换。

  

//堆排序
public static void HeapSort(int[] a,int n){
int t,i;
int j;
for(i=n/2-1;i>=0;i--){
HeapAdjust(a,i,n);//将a[0,n-1]构成大顶堆
}
for(i=n-1;i>0;i++){//将最后的一个,与第一个进行比较
t=a[0];
a[0]=a[i];
a[i]=t;
HeapAdjust(a,0,i);//将a[0]至a[i]重新进行调整
}
}

  

直接选择排序&堆排序的更多相关文章

  1. 排序 选择排序&&堆排序

    选择排序&&堆排序 1.选择排序: 介绍:选择排序(Selection sort)是一种简单直观的排序算法.它的工作原理如下.首先在未排序序列中找到最小(大)元素,存放到排序序列的起始 ...

  2. 八大排序算法之四选择排序—堆排序(Heap Sort)

    堆排序是一种树形选择排序,是对直接选择排序的有效改进. 基本思想: 堆的定义如下:具有n个元素的序列(k1,k2,...,kn),当且仅当满足 时称之为堆.由堆的定义可以看出,堆顶元素(即第一个元素) ...

  3. 选择排序—堆排序(Heap Sort) 没看明白,不解释

    堆排序是一种树形选择排序,是对直接选择排序的有效改进. 基本思想: 堆的定义如下:具有n个元素的序列(k1,k2,...,kn),当且仅当满足 时称之为堆.由堆的定义可以看出,堆顶元素(即第一个元素) ...

  4. 内部排序->选择排序->堆排序

    文字描述 堆排序中,待排序数据同样可以用完全二叉树表示, 完全二叉树的所有非终端结点的值均不大于(或小于)其左.右孩子结点的值.由此,若序列{k1, k2, …, kn}是堆,则堆顶元素(或完全二叉树 ...

  5. 选择排序:直接选择排序&堆排序

    上一篇中, 介绍了交换排序中的冒泡排序和快速排序, 那么这一篇就来介绍一下 选择排序和堆排序, 以及他们与快速排序的比较. 一.直接选择排序 1. 思想 在描述直接选择排序思想之前, 先来一个假设吧. ...

  6. 9, java数据结构和算法: 直接插入排序, 希尔排序, 简单选择排序, 堆排序, 冒泡排序,快速排序, 归并排序, 基数排序的分析和代码实现

    内部排序: 就是使用内存空间来排序 外部排序: 就是数据量很大,需要借助外部存储(文件)来排序. 直接上代码: package com.lvcai; public class Sort { publi ...

  7. 选择排序---堆排序算法(Javascript版)

    堆排序分为两个过程: 1.建堆. 堆实质上是完全二叉树,必须满足:树中任一非叶子结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字. 堆分为:大根堆和小根堆,升序排序采用大根堆,降序排序 ...

  8. IOS- 快速排序,冒泡排序,直接插入排序和折半插入排序,希尔排序,堆排序,直接选择排序

    /*******************************快速排序 start**********************************///随即取 当前取第一个,首先找到第一个的位置 ...

  9. 基础排序算法,java实现(快速,冒泡,选择,堆排序,插入)

    1.冒泡排序: (1)比较相邻的元素.如果第一个比第二个大,就交换他们两个. (2)外面再套个循环就行. 算法复杂度:O(N2)   不罗嗦,上代码: //冒泡排序(两两交换,外加一个外循环) pub ...

随机推荐

  1. 【原创】SQL SERVER 2012安装配置说明(多图详解)

    1. 优先安装软件 1. net framework3.5. 2. 在安装SQL SERVER 2012前需要3.5的支持.在WIN 2012系统可以在系统管理的添加角色和功能中安装,如下将[.NET ...

  2. PHP:global全局变量的使用

    global全局变量能够让我们更好的去运用,直接上例子: 1.一个函数,获取函数外的内容: 得到的结果: 2.两个函数,函数2获取函数1的全局变量内容:(重点) 结果: 以上就是我的总结啦 END

  3. 【转载】#346 - Polymorphism

    Recall that polymorphism is one of the three core principles of object-oriented programming. Polymor ...

  4. Kubernetes解决了Docker使用中的哪些问题?

    kubernetes是谷歌开源的容器集群管理系统,是Google多年大规模容器管理技术Borg的开源版本 (1)基于容器的应用部署.维护和滚动升级 (2)网络,建立容器之间的通信子网如隧道.路由等,解 ...

  5. object dection资源

    https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html

  6. 安装ubuntu-tweak

    第一步:添加tweak源 sudo add-apt-repository ppa:tualatrix/ppa   第二步:更新 sudo apt-get update   第三步:安装ubuntu-t ...

  7. 旧文备份: 怎样实现SDO服务

    SDO是CANopen协议中最复杂的一部分,带有应答机制,有多种传输方式,并且完整的SDO功能节点需提供1个SDO server和多个SDO client,因此SDO的实现异常困难,协议多种传输方式的 ...

  8. 第6章 新建工程-寄存器版—零死角玩转STM32-F429系列

    第6章     新建工程—寄存器版 全套200集视频教程和1000页PDF教程请到秉火论坛下载:www.firebbs.cn 野火视频教程优酷观看网址:http://i.youku.com/fireg ...

  9. javascript入门笔记2-window

    1.JavaScript-输出内容(document.write) <script type="text/javascript"> document.write(&qu ...

  10. python 多进程,多线程,协程

    在我们实际编码中,会遇到一些并行的任务,因为单个任务无法最大限度的使用计算机资源.使用并行任务,可以提高代码效率,最大限度的发挥计算机的性能.python实现并行任务可以有多进程,多线程,协程等方式. ...