题意讲某个二进制按照规则每一位对应斐波那契数生成新的数字,然后2个数字求和。再求由该规则生成的二进制串。并且要求尽量用更大项的fib数(题目提示不能由连续的1就是2个连续的1(11)不如100更优)

用大数处理出100项fib。然后模拟交替置位位0或者1,输出

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == ? b : gcd(b, a % b);}
const int numlen=;
struct bign {
int len, s[numlen];
bign() {
memset(s, , sizeof(s));
len = ;
}
bign(int num) { *this = num; }
bign(const char *num) { *this = num; }
bign operator = (const int num) {
char s[numlen];
sprintf(s, "%d", num);
*this = s;
return *this;
}
bign operator = (const char *num) {
len = strlen(num);
while(len > && num[] == '') num++, len--;
for(int i = ;i < len; i++) s[i] = num[len-i-] - '';
return *this;
} void deal() {
while(len > && !s[len-]) len--;
} bign operator + (const bign &a) const {
bign ret;
ret.len = ;
int top = max(len, a.len) , add = ;
for(int i = ;add || i < top; i++) {
int now = add;
if(i < len) now += s[i];
if(i < a.len) now += a.s[i];
ret.s[ret.len++] = now%;
add = now/;
}
return ret;
}
bign operator - (const bign &a) const {
bign ret;
ret.len = ;
int cal = ;
for(int i = ;i < len; i++) {
int now = s[i] - cal;
if(i < a.len) now -= a.s[i];
if(now >= ) cal = ;
else {
cal = ; now += ;
}
ret.s[ret.len++] = now;
}
ret.deal();
return ret;
}
bign operator * (const bign &a) const {
bign ret;
ret.len = len + a.len;
for(int i = ;i < len; i++) {
for(int j = ;j < a.len; j++)
ret.s[i+j] += s[i]*a.s[j];
}
for(int i = ;i < ret.len; i++) {
ret.s[i+] += ret.s[i]/;
ret.s[i] %= ;
}
ret.deal();
return ret;
} bign operator * (const int num) {
// printf("num = %d\n", num);
bign ret;
ret.len = ;
int bb = ;
for(int i = ;i < len; i++) {
int now = bb + s[i]*num;
ret.s[ret.len++] = now%;
bb = now/;
}
while(bb) {
ret.s[ret.len++] = bb % ;
bb /= ;
}
ret.deal();
return ret;
} bign operator / (const bign &a) const {
bign ret, cur = ;
ret.len = len;
for(int i = len-;i >= ; i--) {
cur = cur*;
cur.s[] = s[i];
while(cur >= a) {
cur -= a;
ret.s[i]++;
}
}
ret.deal();
return ret;
} bign operator % (const bign &a) const {
bign b = *this / a;
return *this - b*a;
} bign operator += (const bign &a) { *this = *this + a; return *this; }
bign operator -= (const bign &a) { *this = *this - a; return *this; }
bign operator *= (const bign &a) { *this = *this * a; return *this; }
bign operator /= (const bign &a) { *this = *this / a; return *this; }
bign operator %= (const bign &a) { *this = *this % a; return *this; } bool operator < (const bign &a) const {
if(len != a.len) return len < a.len;
for(int i = len-;i >= ; i--) if(s[i] != a.s[i])
return s[i] < a.s[i];
return false;
}
bool operator > (const bign &a) const { return a < *this; }
bool operator <= (const bign &a) const { return !(*this > a); }
bool operator >= (const bign &a) const { return !(*this < a); }
bool operator == (const bign &a) const { return !(*this > a || *this < a); }
bool operator != (const bign &a) const { return *this > a || *this < a; } string str() const {
string ret = "";
for(int i = ;i < len; i++) ret = char(s[i] + '') + ret;
return ret;
}
};
istream& operator >> (istream &in, bign &x) {
string s;
in >> s;
x = s.c_str();
return in;
}
ostream& operator << (ostream &out, const bign &x) {
out << x.str();
return out;
}
char a[numlen],b[numlen];
bign fib[numlen];
void init()
{
fib[]=;fib[]=; fib[]=;
for (int i=;i<numlen;i++) fib[i]=fib[i-]+fib[i-];
}
bign trans(char *a)
{
bign sum=;
int len=strlen(a);
for (int i=;i<=len;i++)
if (a[i-]=='')
sum+=fib[len-i+];
//cout<<sum<<endl;
return sum;
}
bign tmp;
void slove(bign sum)
{
if (sum==tmp) {puts("");return ;}
int i=;
for (i=;i<numlen;i++)
if (fib[i]>sum) break;
i--;
bool flag=true;
for (;i>;i--)
{
//cout<<sum<<' '<<fib[i]<<endl;
if (fib[i]<=sum && flag)
{
printf("");
sum=sum-fib[i];
flag=false;
}
else
{
printf("");
flag=true;
}
}
putchar('\n');
}
int main()
{
init();
bool first=false;
while (scanf("%s%s",a,b)!=EOF)
{
if (first) putchar('\n');
else first=true;
tmp=;
bign num1=trans(a);
bign num2=trans(b);
bign sum=num1+num2;
//cout<<sum<<endl;
//for (int i=1;i<=10;i++) cout<<fib[i]<<' ';cout<<endl;
slove(sum);
}
return ;
}

UVA 763 Fibinary Numbers的更多相关文章

  1. UVa 10006 - Carmichael Numbers

    UVa 10006 - Carmichael Numbers An important topic nowadays in computer science is cryptography. Some ...

  2. Uva - 12050 Palindrome Numbers【数论】

    题目链接:uva 12050 - Palindrome Numbers 题意:求第n个回文串 思路:首先可以知道的是长度为k的回文串个数有9*10^(k-1),那么依次计算,得出n是长度为多少的串,然 ...

  3. UVA.136 Ugly Numbers (优先队列)

    UVA.136 Ugly Numbers (优先队列) 题意分析 如果一个数字是2,3,5的倍数,那么他就叫做丑数,规定1也是丑数,现在求解第1500个丑数是多少. 既然某数字2,3,5倍均是丑数,且 ...

  4. UVA - 13022 Sheldon Numbers(位运算)

    UVA - 13022 Sheldon Numbers 二进制形式满足ABA,ABAB数的个数(A为一定长度的1,B为一定长度的0). 其实就是寻找在二进制中满足所有的1串具有相同的长度,所有的0串也 ...

  5. UVA - 136 Ugly Numbers (有关set使用的一道题)

    Ugly numbers are numbers whose only prime factors are 2, 3 or 5. The sequence1, 2, 3, 4, 5, 6, 8, 9, ...

  6. POJ2402/UVA 12050 Palindrome Numbers 数学思维

    A palindrome is a word, number, or phrase that reads the same forwards as backwards. For example,the ...

  7. UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)

      Carmichael Numbers  An important topic nowadays in computer science is cryptography. Some people e ...

  8. UVa 11461 - Square Numbers【数学,暴力】

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  9. UVA 350 Pseudo-Random Numbers

     Pseudo-Random Numbers  Computers normally cannot generate really random numbers, but frequently are ...

随机推荐

  1. Android面试收集录2 Broadcast Receiver详解

    1.Broadcast Receiver广播接收器简单介绍 1.1.定义 Broadcast Receiver(广播接收器),属于Android四大组件之一 在Android开发中,Broadcast ...

  2. 15.2,redis发布订阅

    发布publish 订阅subscribe Redis 通过 PUBLISH . SUBSCRIBE 等命令实现了订阅与发布模式. 举例1: qq群的公告,单个发布者,多个收听者 发布/订阅 实验 发 ...

  3. TopCoder SRM 710 Div2 Hard MinMaxMax Floyd最短路变形

    题意: 有一个无向连通图,没有重边没有自环,并给出顶点的权值和边的权值 定义一条路径\(difficulty\)值为该路径上最大的点权乘上最大的边权 定义函数\(d(i,j)\)为\(i,j\)之间的 ...

  4. swoole创建websocket服务器

    目录 1 安装准备 1.1 安装swoole前必须保证系统已经安装了下列软件 1.2 下载并解压 1.3 编译安装成功后,修改php.ini 2 构建Swoole基本实例 2.1 tcp服务器实例 2 ...

  5. VSX-3 VSCT文件

    关于VSPackage中的VSCT,算是VSX开发中比较重要的一个成员. 我这里给出LearnVSXNow!系列文章关于VSCT的链接,除了#14有译文. #14 #18 #25 看完上面几篇文章,也 ...

  6. js 全局变量和局部变量

    Javascript在执行前会对整个脚本文件的声明部分做完整分析(包括局部变量),但是不能对变量定义做提前解析 1.作用域和作用域链 2.变量声明提前

  7. HTML--留

    1.html图像   <p> 这是个图像<img src=“\路径\”  alt=“图像不显示不出来时代替图片” width=“1” height=“1” >   </p ...

  8. install ironic-inspector

    安装相应的包和组件 yum install openstack-ironic-inspector python-ironic-inspector-client -y 创建user openstack ...

  9. win10&hyper上装Ubuntu出现没有找到dev fd0, sector 0 错误

    win10 hyper装 ubuntu blk_update_request:I/O error,dev sr0,sector0 错误 配置好安装重启后出现 blk_update_request: I ...

  10. linux备忘录-bash

    知识点 环境变量 HOME PATH MAIL SHELL RANDOM // 0~32767的随机数 declare -i number=$RANDOM*10/32768 //0-9的随机数 HIS ...