UVA 763 Fibinary Numbers
题意讲某个二进制按照规则每一位对应斐波那契数生成新的数字,然后2个数字求和。再求由该规则生成的二进制串。并且要求尽量用更大项的fib数(题目提示不能由连续的1就是2个连续的1(11)不如100更优)
用大数处理出100项fib。然后模拟交替置位位0或者1,输出
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == ? b : gcd(b, a % b);}
const int numlen=;
struct bign {
int len, s[numlen];
bign() {
memset(s, , sizeof(s));
len = ;
}
bign(int num) { *this = num; }
bign(const char *num) { *this = num; }
bign operator = (const int num) {
char s[numlen];
sprintf(s, "%d", num);
*this = s;
return *this;
}
bign operator = (const char *num) {
len = strlen(num);
while(len > && num[] == '') num++, len--;
for(int i = ;i < len; i++) s[i] = num[len-i-] - '';
return *this;
} void deal() {
while(len > && !s[len-]) len--;
} bign operator + (const bign &a) const {
bign ret;
ret.len = ;
int top = max(len, a.len) , add = ;
for(int i = ;add || i < top; i++) {
int now = add;
if(i < len) now += s[i];
if(i < a.len) now += a.s[i];
ret.s[ret.len++] = now%;
add = now/;
}
return ret;
}
bign operator - (const bign &a) const {
bign ret;
ret.len = ;
int cal = ;
for(int i = ;i < len; i++) {
int now = s[i] - cal;
if(i < a.len) now -= a.s[i];
if(now >= ) cal = ;
else {
cal = ; now += ;
}
ret.s[ret.len++] = now;
}
ret.deal();
return ret;
}
bign operator * (const bign &a) const {
bign ret;
ret.len = len + a.len;
for(int i = ;i < len; i++) {
for(int j = ;j < a.len; j++)
ret.s[i+j] += s[i]*a.s[j];
}
for(int i = ;i < ret.len; i++) {
ret.s[i+] += ret.s[i]/;
ret.s[i] %= ;
}
ret.deal();
return ret;
} bign operator * (const int num) {
// printf("num = %d\n", num);
bign ret;
ret.len = ;
int bb = ;
for(int i = ;i < len; i++) {
int now = bb + s[i]*num;
ret.s[ret.len++] = now%;
bb = now/;
}
while(bb) {
ret.s[ret.len++] = bb % ;
bb /= ;
}
ret.deal();
return ret;
} bign operator / (const bign &a) const {
bign ret, cur = ;
ret.len = len;
for(int i = len-;i >= ; i--) {
cur = cur*;
cur.s[] = s[i];
while(cur >= a) {
cur -= a;
ret.s[i]++;
}
}
ret.deal();
return ret;
} bign operator % (const bign &a) const {
bign b = *this / a;
return *this - b*a;
} bign operator += (const bign &a) { *this = *this + a; return *this; }
bign operator -= (const bign &a) { *this = *this - a; return *this; }
bign operator *= (const bign &a) { *this = *this * a; return *this; }
bign operator /= (const bign &a) { *this = *this / a; return *this; }
bign operator %= (const bign &a) { *this = *this % a; return *this; } bool operator < (const bign &a) const {
if(len != a.len) return len < a.len;
for(int i = len-;i >= ; i--) if(s[i] != a.s[i])
return s[i] < a.s[i];
return false;
}
bool operator > (const bign &a) const { return a < *this; }
bool operator <= (const bign &a) const { return !(*this > a); }
bool operator >= (const bign &a) const { return !(*this < a); }
bool operator == (const bign &a) const { return !(*this > a || *this < a); }
bool operator != (const bign &a) const { return *this > a || *this < a; } string str() const {
string ret = "";
for(int i = ;i < len; i++) ret = char(s[i] + '') + ret;
return ret;
}
};
istream& operator >> (istream &in, bign &x) {
string s;
in >> s;
x = s.c_str();
return in;
}
ostream& operator << (ostream &out, const bign &x) {
out << x.str();
return out;
}
char a[numlen],b[numlen];
bign fib[numlen];
void init()
{
fib[]=;fib[]=; fib[]=;
for (int i=;i<numlen;i++) fib[i]=fib[i-]+fib[i-];
}
bign trans(char *a)
{
bign sum=;
int len=strlen(a);
for (int i=;i<=len;i++)
if (a[i-]=='')
sum+=fib[len-i+];
//cout<<sum<<endl;
return sum;
}
bign tmp;
void slove(bign sum)
{
if (sum==tmp) {puts("");return ;}
int i=;
for (i=;i<numlen;i++)
if (fib[i]>sum) break;
i--;
bool flag=true;
for (;i>;i--)
{
//cout<<sum<<' '<<fib[i]<<endl;
if (fib[i]<=sum && flag)
{
printf("");
sum=sum-fib[i];
flag=false;
}
else
{
printf("");
flag=true;
}
}
putchar('\n');
}
int main()
{
init();
bool first=false;
while (scanf("%s%s",a,b)!=EOF)
{
if (first) putchar('\n');
else first=true;
tmp=;
bign num1=trans(a);
bign num2=trans(b);
bign sum=num1+num2;
//cout<<sum<<endl;
//for (int i=1;i<=10;i++) cout<<fib[i]<<' ';cout<<endl;
slove(sum);
}
return ;
}
UVA 763 Fibinary Numbers的更多相关文章
- UVa 10006 - Carmichael Numbers
UVa 10006 - Carmichael Numbers An important topic nowadays in computer science is cryptography. Some ...
- Uva - 12050 Palindrome Numbers【数论】
题目链接:uva 12050 - Palindrome Numbers 题意:求第n个回文串 思路:首先可以知道的是长度为k的回文串个数有9*10^(k-1),那么依次计算,得出n是长度为多少的串,然 ...
- UVA.136 Ugly Numbers (优先队列)
UVA.136 Ugly Numbers (优先队列) 题意分析 如果一个数字是2,3,5的倍数,那么他就叫做丑数,规定1也是丑数,现在求解第1500个丑数是多少. 既然某数字2,3,5倍均是丑数,且 ...
- UVA - 13022 Sheldon Numbers(位运算)
UVA - 13022 Sheldon Numbers 二进制形式满足ABA,ABAB数的个数(A为一定长度的1,B为一定长度的0). 其实就是寻找在二进制中满足所有的1串具有相同的长度,所有的0串也 ...
- UVA - 136 Ugly Numbers (有关set使用的一道题)
Ugly numbers are numbers whose only prime factors are 2, 3 or 5. The sequence1, 2, 3, 4, 5, 6, 8, 9, ...
- POJ2402/UVA 12050 Palindrome Numbers 数学思维
A palindrome is a word, number, or phrase that reads the same forwards as backwards. For example,the ...
- UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)
Carmichael Numbers An important topic nowadays in computer science is cryptography. Some people e ...
- UVa 11461 - Square Numbers【数学,暴力】
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- UVA 350 Pseudo-Random Numbers
Pseudo-Random Numbers Computers normally cannot generate really random numbers, but frequently are ...
随机推荐
- TouTiao开源项目 分析笔记7 加载数据的过程
1.以新闻页中的段子数据显示为例 1.1.首先执行InitApp==>SplashActivity. 因为在AndroidManifest.xml中定义了一个<intent-filter& ...
- WPF 加载等待动画
原文:WPF 加载等待动画 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/qq_29844879/article/details/80216587 ...
- P1182 数列分段Section II
P1182 数列分段Section II 题目描述 对于给定的一个长度为N的正整数数列A[i],现要将其分成M(M≤N)段,并要求每段连续,且每段和的最大值最小. 关于最大值最小: 例如一数列4 2 ...
- gettid 和pthread_self的区别
转: Linux中,每个进程有一个pid,类型pid_t,由getpid()取得.Linux下的POSIX线程也有一个id,类型 pthread_t,由pthread_self()取得,该id由线程库 ...
- iOS远程消息推送原理
1. 什么是远程消息推送? APNs:Apple Push Notification server 苹果推送通知服务苹果的APNs允许设备和苹果的推送通知服务器保持连接,支持开发者推送消息给用户设备对 ...
- nginx配置及HTTPS配置示例
一.nginx简单配置示例 user www www; worker_processes ; #error_log logs/error.log; #error_log logs/error.log ...
- 【Kernel Logistic Regression】林轩田机器学习技术
最近求职真慌,一方面要看机器学习,一方面还刷代码.还是静下心继续看看课程,因为觉得实在讲的太好了.能求啥样搬砖工作就随缘吧. 这节课的核心就在如何把kernel trick到logistic regr ...
- 【Linux命令】删除大文件后磁盘空间未释放问题
前言 工作中经常遇到Linux系统磁盘空间不足,但是删除后较大的日志文件后,发现磁盘空间仍没有被释放,有点摸不着头脑,今天博主带大家解决这个问题. 思路 1.工作发现磁盘空间不足: 2.找到占用磁盘空 ...
- Kotlin中功能操作与集合(KAD 11)
作者:Antonio Leiva 时间:Feb 2, 2017 原文链接:https://antonioleiva.com/functional-operations-collections-kotl ...
- Spring Boot多数据源配置(一)durid、mysql、jpa整合
目前在做一个统计项目.需要多数据源整合,其中包括mysql和mongo.本节先讲mysql.durid.jpa与spring-boot的整合. 引入Durid包 <dependency> ...