首先给大家一个网址讲的比较细:http://www.cnblogs.com/en-heng/p/4002658.html

如果还有不懂的话,可以回来再看看我的文章;

概念明确:

  • 树边:(在[2]中称为父子边),在搜索树中的实线所示,可理解为在DFS过程中访问未访问节点时所经过的边。
  • 回边:(在[2]中称为返祖边后向边),在搜索树中的虚线所示,可理解为在DFS过程中遇到已访问节点时所经过的边

    low[u]记录节点u或u的子树通过非父子边追溯到最早的祖先节点

    用那个网址的例子,我给大家推演一下tarjan的dfn和low;

    A的dfn和low均为1;

    B:low = 1(通过B->A的回边)

    C: low = 1(通过C->A的回边)

    D:low = (B的dfn)5,(通过D->B的回边)

    E:low = 5,(通过E->B的回边)

    F:low = 1(通过F->A的回边)

    G:low = 5(通过G->B的回边)

    H:low = 5(通过H->B的回边)

    例题可以参考cojs921

    http://cojs.tk/cogs/problem/problem.php?pid=921

    代码如下

    #include<cstdio>
    const int maxn = 5010 ;
    using namespace std;
    inline void read(int &x){
    x=0;char ch;
    while(ch=getchar(),ch<'!');
    while(x=10*x+ch-'0',ch=getchar(),ch>'!');
    }
    inline int cat_max(const int &a,const int &b){return a>b ? a:b;}
    inline int cat_min(const int &a,const int &b){return a<b ? a:b;}
    struct Edge{
    int to,next;
    }G[100100];
    int tot,head[maxn],scc_cnt,dfs_cnt;
    int dfn[maxn],low[maxn],sccno[maxn];
    int sta[maxn],top,num[maxn];
    void add(int u,int v){
    G[++tot].to=v;
    G[tot].next=head[u];
    head[u]=tot;
    }
    void tarjan(int u){
    low[u]=dfn[u]=++dfs_cnt;
    sta[++top]=u;
    for(int i=head[u];i;i=G[i].next){
    int to=G[i].to;
    if(!dfn[to]){
    tarjan(to);
    low[u]=cat_min(low[u],low[to]);
    }
    else if(!sccno[to]) low[u]=cat_min(low[u],dfn[to]);
    }
    if(low[u]==dfn[u]){
    scc_cnt++;
    while(1){
    int x=sta[top--];
    sccno[x]=scc_cnt;
    num[scc_cnt]++;
    if(x==u) break;
    }
    }
    }
    int main(){
    freopen("classroom.in","r",stdin);
    freopen("classroom.out","w",stdout);
    int n;read(n);
    int m;read(m);
    int x,y,op;
    for(int i=1;i<=m;i++){
    read(x),read(y),read(op);
    add(x,y);
    if(op==2) add(y,x);
    }
    for(int i=1;i<=n;i++) if(!dfn[i]) tarjan(i);
    int max1=0,pos=0;
    for(int i=1;i<=scc_cnt;i++){
    if(num[i]>max1){
    max1=num[i];
    pos=i;
    }
    }
    printf("%d\n",max1);
    for(int i=1;i<=n;i++){
    if(sccno[i]==pos){
    printf("%d ",i);
    }
    }
    fclose(stdin);fclose(stdout);
    return 0;
    }

  • tarjan求割点的更多相关文章

    1. UESTC 900 方老师炸弹 --Tarjan求割点及删点后连通分量数

      Tarjan算法. 1.若u为根,且度大于1,则为割点 2.若u不为根,如果low[v]>=dfn[u],则u为割点(出现重边时可能导致等号,要判重边) 3.若low[v]>dfn[u], ...

    2. POJ 1144 Network(Tarjan求割点)

      Network Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12707   Accepted: 5835 Descript ...

    3. poj 1523 SPF(tarjan求割点)

      本文出自   http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...

    4. poj_1144Network(tarjan求割点)

      poj_1144Network(tarjan求割点) 标签: tarjan 割点割边模板 题目链接 Network Time Limit: 1000MS Memory Limit: 10000K To ...

    5. 洛谷P3388 【模板】割点(割顶)(tarjan求割点)

      题目背景 割点 题目描述 给出一个n个点,m条边的无向图,求图的割点. 输入输出格式 输入格式: 第一行输入n,m 下面m行每行输入x,y表示x到y有一条边 输出格式: 第一行输出割点个数 第二行按照 ...

    6. [POJ1144][BZOJ2730]tarjan求割点

      求割点 一种显然的n^2做法: 枚举每个点,去掉该点连出的边,然后判断整个图是否联通 用tarjan求割点: 分情况讨论 如果是root的话,其为割点当且仅当下方有两棵及以上的子树 其他情况 设当前节 ...

    7. poj1144 tarjan求割点

      poj1144 tarjan求割点 额,算法没什么好说的,只是这道题的读入非常恶心. 注意,当前点x是否是割点,与low[x]无关,只和low[son]和dfn[x]有关. 还有,默代码的时候记住分目 ...

    8. tarjan求割点割边的思考

      这个文章的思路是按照这里来的.这里讨论的都是无向图.应该有向图也差不多. 1.如何求割点 首先来看求割点.割点必须满足去掉其以后,图被分割.tarjan算法考虑了两个: 根节点如果有两颗及以上子树,它 ...

    9. Tarjan求割点和桥

      by szTom 前置知识 邻接表存储及遍历图 tarjan求强连通分量 割点 割点的定义 在一个无向图中,如果有一个顶点集合,删除这个顶点集合以及这个集合中所有顶点相关联的边以后,图的连通分量增多, ...

    10. tarjan求割点与割边

      tarjan求割点与割边 洛谷P3388 [模板]割点(割顶) 割点 解题思路: 求割点和割点数量模版,对于(u,v)如果low[v]>=dfn[u]那么u为割点,特判根结点,若根结点子树有超过 ...

    随机推荐

    1. Miller-Rabin大素数测试模板

      根据费马小定理: 对于素数n,a(0<a<n),a^(n-1)=1(mod n) 如果对于一个<n的正整数a,a^(n-1)!=1(mod n),则n必不是素数. 然后就可以随机生成 ...

    2. OKR与KPI管理的区别与联系

      OKR是一种新兴的管理体系,最近几年被引进中国.由于在IT.互联网.金融.游戏等知识密集型企业中有着显著的效果,得到中国企业的认可. OKR是英文Objectives & Key Result ...

    3. [T-SQL] 获取拼音

      )) ) as begin ) ) declare @i int declare @words_len int declare @unicode int set @words = ltrim(rtri ...

    4. OLTP和OLAP

      1 OLTP和OLAP online transaction processing,联机事务处理.业务类系统主要供基层人员使用,进行一线业务操作,通常被称为联机事务处理. online analyti ...

    5. SpringMVC请求流程

      Spring结构图 SpringMVC请求流程图 SpringMVC请求流程图语述: request--->DispatcherServler(中央调度器/前端控制器)---> Handl ...

    6. matlab 调用 python

      众所周知,Python凭借其众多的第三方模块,近年来被数据分析.机器学习.深度学习等爱好者所喜爱,最主要的是Python还是开源的.另一方面,MATLAB因其在仿真方面的独特优势也被众多人追捧.而在国 ...

    7. ARDUINO使用GPRS发送GPS数据到OneNet测试

      功能: 测试把固定的GPS数据发送到OneNet平台 调试途中碰到的问题 ARDUINO不支持sprintf的double打印,只能转换为char字符串然后再%s打印 #include <Tim ...

    8. iOS中成员变量和属性区别

      历史由来: 接触iOS的人都知道,@property声明的属性默认会生成一个_类型的成员变量,同时也会生成setter/getter方法. 但这只是在iOS5之后,苹果推出的一个新机制.看老代码时,经 ...

    9. MapReduce修改输出的文件名

      MapReduce默认输出的文件名称格式如下:part-r-00000 自定义名称,比如editName,则输出的文件名称为:editName-r-0000,此方法没有彻底修改整个文件名,只修改了一部 ...

    10. UOJ71 【WC2015】k小割

      本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...