BZOJ4003:[JLOI2015]城池攻占
浅谈左偏树:https://www.cnblogs.com/AKMer/p/10246635.html
题目传送门:https://lydsy.com/JudgeOnline/problem.php?id=4003
从下往上合并左偏树然后把战斗力低的踢掉。做完之后打标记。因为不会乘负数所以小根堆的性质不会被破坏。
不知道为什么用\(struct\)封装左偏树会\(RE\),改成\(namespace\)之后才\(AC\)。
时间复杂度:\(O(nlogn)\)
空间复杂度:\(O(n)\)
代码如下:
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn=3e5+5;
bool a[maxn];
int dep[maxn];
ll h[maxn],v[maxn];
int n,m,tot,rt[maxn],ans[maxn];
int now[maxn],pre[maxn],to[maxn];
struct Knight {int c,ans;ll s;}p[maxn];
int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
}
ll READ() {
ll x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
}
void add(int a,int b) {
pre[++tot]=now[a];
now[a]=tot,to[tot]=b;
}
namespace T {//用struct会RE,我也不清楚
int dist[maxn];
int son[maxn][2];
ll add_tag[maxn],mul_tag[maxn];
void init() {
dist[0]=-1;
for(int i=1;i<=m;i++)
add_tag[i]=0,mul_tag[i]=1;
}
void make_mul_tag(int u,ll v) {
p[u].s*=v,add_tag[u]*=v,mul_tag[u]*=v;
}
void make_add_tag(int u,ll v) {
p[u].s+=v,add_tag[u]+=v;
}
void push_down(int p) {
if(mul_tag[p]!=1) {
make_mul_tag(son[p][0],mul_tag[p]);
make_mul_tag(son[p][1],mul_tag[p]);
mul_tag[p]=1;
}
if(add_tag[p]) {
make_add_tag(son[p][0],add_tag[p]);
make_add_tag(son[p][1],add_tag[p]);
add_tag[p]=0;
}
}
int merge(int a,int b) {
if(!a||!b)return a+b;
if(p[a].s>p[b].s)swap(a,b);
push_down(a);
son[a][1]=merge(son[a][1],b);
if(dist[son[a][1]]>dist[son[a][0]])
swap(son[a][1],son[a][0]);
dist[a]=dist[son[a][1]]+1;
return a;
}
int pop(int u) {
push_down(u);
int tmp=merge(son[u][0],son[u][1]);
son[u][0]=son[u][1]=0;
return tmp;
}
}
void dfs(int u) {
for(int P=now[u],V=to[P];P;P=pre[P],V=to[P])
dep[V]=dep[u]+1,dfs(V),rt[u]=T::merge(rt[u],rt[V]);
while(rt[u]&&p[rt[u]].s<h[u]) {
ans[u]++;p[rt[u]].ans=dep[p[rt[u]].c]-dep[u];
rt[u]=T::pop(rt[u]);
}
if(a[u])T::make_mul_tag(rt[u],v[u]);
else T::make_add_tag(rt[u],v[u]);
}
int main() {
n=read(),m=read();
for(int i=1;i<=n;i++)h[i]=READ();
for(int i=2;i<=n;i++) {
int f=read();add(f,i);
a[i]=read(),v[i]=READ();
}T::init();
for(int i=1;i<=m;i++) {
p[i].s=READ(),p[i].c=read();
rt[p[i].c]=T::merge(rt[p[i].c],i);
}dep[1]=1;dfs(1);
while(rt[1]) {
p[rt[1]].ans=dep[p[rt[1]].c];
rt[1]=T::pop(rt[1]);
}
for(int i=1;i<=n;i++)printf("%d\n",ans[i]);
for(int i=1;i<=m;i++)printf("%d\n",p[i].ans);
return 0;
}
BZOJ4003:[JLOI2015]城池攻占的更多相关文章
- [bzoj4003][JLOI2015]城池攻占_左偏树
城池攻占 bzoj-4003 JLOI-2015 题目大意:一颗n个节点的有根数,m个有初始战斗力的骑士都站在节点上.每一个节点有一个standard,如果这个骑士的战斗力超过了这个门槛,他就会根据城 ...
- BZOJ4003 [JLOI2015]城池攻占 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4003 题意概括 题意有点复杂,直接放原题了. 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑 ...
- BZOJ4003[JLOI2015]城池攻占——可并堆
题目描述 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖, 其中 fi ...
- [BZOJ4003][JLOI2015]城池攻占(左偏树)
这题有多种做法,一种是倍增预处理出每个点往上走2^i步最少需要的初始战斗力,一种是裸的启发式合并带标记splay. 每个点合并能攻占其儿子的所有骑士,删去所有无法攻占这个城市的骑士并记录答案. 注意到 ...
- BZOJ4003 JLOI2015城池攻占
用左偏树模拟攻占的过程,维护最小值,最多入和出m次,每次log复杂度. #include<bits/stdc++.h> using namespace std; ; typedef lon ...
- BZOJ4003 [JLOI2015]城池攻占
这题有两种做法来着... 第一种就是一开始想到的比较不靠谱,不过貌似可以过掉: 看从$1$号节点开始到$p$号节点最大需要的体力,记录单调上升的体力,询问的时候二分跳着走就可以了 不过精度问题还有可能 ...
- 【BZOJ4003】[JLOI2015]城池攻占 可并堆
[BZOJ4003][JLOI2015]城池攻占 Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 1 号 ...
- BZOJ_4003_[JLOI2015]城池攻占_可并堆
BZOJ_4003_[JLOI2015]城池攻占_可并堆 Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 ...
- [洛谷P3261] [JLOI2015]城池攻占(左偏树)
不得不说,这道题目是真的难,真不愧它的“省选/NOI-”的紫色大火题!!! 花了我晚自习前半节课看题解,写代码,又花了我半节晚自习调代码,真的心态爆炸.基本上改得和题解完全一样了我才过了这道题!真的烦 ...
- BZOJ4003:[JLOI2015]城池攻占——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4003 https://www.luogu.org/problemnew/show/P3261 小铭 ...
随机推荐
- [Oracle]根据字段值全库搜索相关数据表和字段
这个需求比较冷门,但对于在某些特定的情况下,还是会有这样的需要的.好在Oracle实现还比较方便,用存储过程则轻松实现. 查询字符串: create or replace procedure sear ...
- PBR探索
原理 根据能量守恒,以及一系列光照原理得出微表面BRDF(Bidirectional Reflectance Distribution Function)公式 // D(h) F(v,h) G(l,v ...
- 读取ByteBuffer有效的数据
转:https://zhidao.baidu.com/question/427134449349230532.html说道 ByteBuffer的缓冲区,就需要知道缓冲区的的三个状态1)capacit ...
- db2数据库还原
1.建好数据库比如TEST,建的时候将codepage设为与目标备份的codepage一致,比如: 437 2.然后备份一下刚建好的数据库,备份成功后,将20141127目录删除,然后将原来备份好的 ...
- onclick事件表示方法
onclick事件表示方法 1.第一种是直接在html中插入onclick事件 & ...
- Apache Shiro 使用手册(三)Shiro 授权(转发:http://kdboy.iteye.com/blog/1155450)
授权即访问控制,它将判断用户在应用程序中对资源是否拥有相应的访问权限. 如,判断一个用户有查看页面的权限,编辑数据的权限,拥有某一按钮的权限,以及是否拥有打印的权限等等. 一.授权的三要素 授权有着三 ...
- shell 日期加减运算
比如今日是2012-04-22 $ date -d "+1 day" +%Y-%m-%d 2012-04-23 $ date -d "-1 day" +%Y ...
- 牛客练习赛13 A 幸运数字Ⅰ 【暴力】
题目链接 https://www.nowcoder.com/acm/contest/70/A 思路 暴力每一个子串 用 MAP 标记一下 然后 最后 遍历一遍 MAP 找出 出现次数最多 并且 字典序 ...
- Scala window下安装
第一步:Java 设置 检测方法前文已说明,这里不再描述. 如果还为安装,可以参考我们的Java 开发环境配置. 接下来,我们可以从 Scala 官网地址 http://www.scala-lang. ...
- 在Tomcat的安装目录下conf目录下的server.xml文件中增加一个xml代码片段,该代码片段中每个属性的含义与用途
contex指上下文,实际上就是一个web项目:path是虚拟目录,访问的时候用127.0.0.1:8080/welcom/*.jsp访问网页,welcome前面要加/;docBase是网页实际存放位 ...