最长递增子序列(LIS)
最长递增子序列(Longest Increasing Subsequence) ,我们简记为 LIS。
题:求一个一维数组arr[i]中的最长递增子序列的长度,如在序列1,-1,2,-3,4,-5,6,-7中,最长递增子序列长度为4,序列为1,2,4,6。
解法一:快速排序+LCS
刚开始做这道题的时候,由于之前做过几道LCS的题,于是最先想到的是快速排序+LCS的方法。这种方法解决了当时只计算单个case的问题,但是后来面对计算多个 case的问题的时候,第一次遇到Memory Limit Exceeded。于是就意识到这种简单解法的时间和空间的复杂度都太高了。于是只能另寻他法。
public class Main {
static int n;
static int[] a;
static int[] b;
static int[][] z;
public static void QuickSort(int[] a){
QSort(a,1,n);
}
public static void QSort(int[] a,int p,int r){
if(p<r)
{
int q=Partition(a,p,r);
QSort(a,p,q-1);
QSort(a,q+1,r);
}
} public static int Partition(int[] a,int p,int r){
int x=a[r];
int i=p-1;
for(int j=p;j<r;j++)
{
if(a[j]<=x){
i=i+1;
swap(a, i, j);
}
}
swap(a, i+1, r);
return i+1;
}
public static void swap(int[] a, int i,int j){
int temp;
temp=a[j];
a[j]=a[i];
a[i]=temp;
}
public static int LCS(int a[],int[] b){
z=new int [n+1][n+1];
int i,j;
for( i=0;i<=n;i++)
z[i][0]=0;
for( j=0;j<=n;j++)
z[0][j]=0; for(i=1;i<=n;i++){
for( j=1;j<=n;j++){
if(a[i]==b[j]){
z[i][j]= z[i-1][j-1]+1;
}
else
z[i][j]=z[i-1][j] > z[i][j-1] ?z[i-1][j]:z[i][j-1];
}
}
return z[n][n];
}
public static void main(String[] args) {
int arr[] = {1,-1,2,-3,4,-5,6,-7};
n=arr.length;
a=new int[n+1];
b=new int[n+1];
int i,j;
for(i=1;i<=n;i++){
b[i]=a[i];
}
QuickSort(a);
//控制严格递增
for(i=1;i<n;i++){
for(j=i+1;j<=n;j++){
if(a[i]!=-1 && a[i]==a[j])
a[j]=-1;
}
}
System.out.println(LCS(a,b));
}
}
解法二:DP(O(N^2))
从后向前分析,很容易想到,第i个元素之前的最长递增子序列的长度要么是1(单独成一个序列),要么就是第i-1个元素之前的最长递增子序列加1,可以有状态方程:
LIS[i+1] = max{1,LIS[k]+1},aray[k],for any k <=i.
即如果array[i+1]大于array[k],那么第i+1个元素可以接在LIS[k]长的子序列后面构成一个更长的子序列。于此同时array[i+1]本身至少可以构成一个长度为1的子序列。
public int LIS(int[] arr, int size){int dp[40]; /* dp[i]记录到[0,i]数组的LIS */
for(int i = 0; i < size; ++i){int lis; /* LIS 长度 */
dp[i] = 1;
for(int j = 0; j < i; ++j){
if(arr[i] > arr[j] && dp[i] < dp[j] + 1){
dp[i] = dp[j] + 1;
if(dp[i] > lis){
lis = dp[i];
}
}
}
}
return lis;
}
解法三:二分查找+DP(O(nlogn))
在解法二中,当考察第i+1个元素的时候,我们是不考虑前面i个元素的分布情况的。现在我们从另一个角度分析,即当考察第i+1个元素的时候考虑前面i个元素的情况。
目的:我们期望在前i个元素中的所有长度为len的递增子序列中找到这样一个序列,它的最大元素比arr[i+1]小,而且长度要尽量的长,如此,我们只需记录len长度的递增子序列中最大元素的最小值就能使得将来的递增子序列尽量地长。
方法:维护一个数组MaxV[i],记录长度为i的递增子序列中最大元素的最小值,并对于数组中的每个元素考察其是哪个子序列的最大元素,二分更新MaxV数组,最终i的值便是最长递增子序列的长度。
仔细的分析请看最长递增子序列 O(NlogN)算法,
public class LIS {
/* 最长递增子序列 LIS
* 设数组长度不超过 30
* DP + BinarySearch
*/
static int[] MaxV=new int[30]; /* 存储长度i+1(len)的子序列最大元素的最小值 */
static int len; /* 存储子序列的最大长度 即MaxV当前的下标*/
static int BinSearch(int[] MaxV, int size, int x){ /* 返回MaxV[i]中刚刚不小于x的那个元素的下标 */
int left = 0, right = size-1;
while(left <= right){
int mid = (left + right) / 2;
if(MaxV[mid] <= x){
left = mid + 1;
}else{
right = mid - 1;
}
}
return left;
} static int getLIS(int[] arr, int size){
MaxV[0] = arr[0]; /* 初始化 */
len = 1;
for(int i = 1; i < size; ++i){ /* 寻找arr[i]属于哪个长度LIS的最大元素 */ if(arr[i] > MaxV[len-1]){ /* 大于最大的自然无需查找,否则二分查其位置 */ MaxV[len++] = arr[i];
}else{
int pos = BinSearch(MaxV,len,arr[i]);
MaxV[pos] = arr[i];
}
}
return len;
} /**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
int arr[] = {1,-1,2,-3,4,-5,6,-7};
/* 计算LIS长度 */
System.out.println(getLIS(arr,arr.length));
}
}
参考资料:
《编程之美》 2.16
Felix’s Blog:最长递增子序列 O(NlogN)算法
勇幸|Thinking (http://www.ahathinking.com)
版权声明:本文为博主原创文章,未经博主允许不得转载。
最长递增子序列(LIS)的更多相关文章
- 2.16 最长递增子序列 LIS
[本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...
- 动态规划(DP),最长递增子序列(LIS)
题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...
- 最长回文子序列LCS,最长递增子序列LIS及相互联系
最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...
- 一个数组求其最长递增子序列(LIS)
一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外 ...
- 算法面试题 之 最长递增子序列 LIS
找出最长递增序列 O(NlogN)(不一定连续!) 参考 http://www.felix021.com/blog/read.php?1587%E5%8F%AF%E6%98%AF%E8%BF%9E%E ...
- 算法之动态规划(最长递增子序列——LIS)
最长递增子序列是动态规划中最经典的问题之一,我们从讨论这个问题开始,循序渐进的了解动态规划的相关知识要点. 在一个已知的序列 {a1, a 2,...an}中,取出若干数组成新的序列{ai1, ai ...
- 最长递增子序列 LIS 时间复杂度O(nlogn)的Java实现
关于最长递增子序列时间复杂度O(n^2)的实现方法在博客http://blog.csdn.net/iniegang/article/details/47379873(最长递增子序列 Java实现)中已 ...
- 动态规划 - 最长递增子序列(LIS)
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...
- 最长递增子序列LIS再谈
DP模型: d(i) 以第 i 个元素结尾的最长递增子序列的长度. 那么就有 d(i) = max(d(j)) + 1;(j<i&&a[j]<a[i]),答案 max(d( ...
- POJ 1836 Alignment 最长递增子序列(LIS)的变形
大致题意:给出一队士兵的身高,一开始不是按身高排序的.要求最少的人出列,使原序列的士兵的身高先递增后递减. 求递增和递减不难想到递增子序列,要求最少的人出列,也就是原队列的人要最多. 1 2 3 4 ...
随机推荐
- iptables的例子1
练习1:实现主机防火墙 设置主机防火墙策略为DROP: iptables -t filter -P INPUT DROP iptables -t filter -P OUTPUT DROP i ...
- mac上傻瓜式java安装环境配置
适用于mac新手用户或者黑苹果用户 首先,打开终端 输入 java -version 检查是否已安装好Java运行环境 显示我现在电脑没有安装 如果返回版本号,说明运行环境成功 对于windows用过 ...
- python基础10 ---匿名函数和递归
一.匿名函数 1.lambda表达式就相当于匿名函数,其格式为: lambda 参数列表:参数表达式 2.lambda自带return值,因为匿名函数有个限制,就是只能有一个表达式,不用写return ...
- eclipse新建Maven项目
1.在eclipse中安装maven插件 2.点击File->new->maven project,出现弹窗后点击next. 接着在弹窗Select an Archetype中,filte ...
- Effective java -- 1
写博客我也不知道是不是一个好习惯,但是目前还不知道有什么其他更有效率的学习方法.现在的学习方法:看书,写博客.如果看明白一个东西,去写博客的话,这通常是一个浪费时间的行为,但是这个过程同样帮助自己二次 ...
- Mysql 导入实战
这个几天公司迁移预览版数据库,当前公司使用的是 Mysql 数据库,版本为 5.6.迁移的数据库大小也不算很大,2G 多一点,总体以小表为主,就几张表数据比较大,有业务记录表达到了 150W 的数量级 ...
- Python 3 并发编程多进程之队列(推荐使用)
Python 3 并发编程多进程之队列(推荐使用) 进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的. 可以往 ...
- systemverilog FAQ(zz)
1. What is clocking block? Ans: Clocking block can be declared using the keywords clocking and endcl ...
- ScreenOS学习笔记
安全区段 第2层 V1-Trust 同一区段内的接口通信不需要策略,不同区段之间的接口通信则需要策略. Global区段没有接口 V1-Untrust V1-DMZ 第3层 Trust Untrust ...
- C++的动态库和静态库(dll)
一,在VS里面 新建项目->Visual C++ -> win32 控制台应用程序 -> 填写项目名称->下一步选择 dll : 二,自动生成的文件如图: 以项目名称生成的My ...