BaoBao has just found a grid with $n$ rows and $m$ columns in his left pocket, where the cell in the $j$-th column of the $i$-th row (indicated by $(i, j)$) contains an arrow (pointing either upwards, downwards, leftwards or rightwards) and an integer $a_{i, j}$.

BaoBao decides to play a game with the grid. He will first select a cell as the initial cell and tick it. After ticking a cell (let's say BaoBao has just ticked cell $(i, j)$), BaoBao will go on ticking another cell according to the arrow and the integer in cell $(i, j)$.

  • If the arrow in cell $(i, j)$ points upwards, BaoBao will go on ticking cell $(i-a_{i, j}, j)$ if it exists.
  • If the arrow in cell $(i, j)$ points downwards, BaoBao will go on ticking cell $(i+a_{i, j}, j)$ if it exists.
  • If the arrow in cell $(i, j)$ points leftwards, BaoBao will go on ticking cell $(i, j-a_{i, j})$ if it exists.
  • If the arrow in cell $(i, j)$ points rightwards, BaoBao will go on ticking cell $(i, j+a_{i, j})$ if it exists.

If the cell BaoBao decides to tick does not exist, or if the cell is already ticked, the game ends.

BaoBao is wondering if he can select a proper initial cell, so that he can tick every cell in the grid exactly once before the game ends. Please help him find the answer.

There are multiple test cases. The first line contains an integer $T$, indicating the number of test cases. For each test case:

The first line contains two integers $n$ and $m$ ($1 \le n \times m \le 10^5$), indicating the number of rows and columns of the grid.

For the following $n$ lines, the $i$-th line contains a string $s_i$ consisting of lowercased English letters ($|s_i| = m$, $s_{i, j} \in \{\text{'u' (ascii: 117)}, \text{'d' (ascii: 100)}, \text{'l' (ascii: 108)}, \text{'r' (ascii: 114)}\}$), where $s_{i, j}$ indicates the direction of arrow in cell $(i, j)$.

  • If $s_{i, j} = \text{'u'}$, the arrow in cell $(i, j)$ points upwards.
  • If $s_{i, j} = \text{'d'}$, the arrow in cell $(i, j)$ points downwards.
  • If $s_{i, j} = \text{'l'}$, the arrow in cell $(i, j)$ points leftwards.
  • If $s_{i, j} = \text{'r'}$, the arrow in cell $(i, j)$ points rightwards.

For the following $n$ lines, the $i$-th line contains $m$ integers $a_{i, 1}, a_{i, 2}, \dots, a_{i, m}$ ($1 \le a_{i, j} \le \max(n, m)$), where $a_{i, j}$ indicates the integer in cell $(i, j)$.

It's guaranteed that the sum of $n \times m$ of all test cases does not exceed $10^6$.

For each test case output one line. If BaoBao can find a proper initial cell, print "Yes" (without quotes), otherwise print "No" (without quotes).


题目概要:给定一个地图,每个地图的点给定下一步的方向和步长,问能否寻找到一点,可以遍历整个地图

为了进行操作,我们先将每个点的入度进行统计,先从0入度的点进行一次bfs(因为dfs好写,先写了dfs,看来数据不是很严格),看是否所有点都访问过了,如果有没有访问过的,说明不能遍历,特别的,如果没有0入度的点,说明任一点都可以通达,我们既可以随便dfs,也可以直接判正确

以下代码:

#include <cstdio>
#include <cstring>
#include <queue>

;
char str[MAXN];
int dig[MAXN];
int vis[MAXN];
int ind[MAXN];
int n, m;

void dfs(int x, int y) {
    //printf("%d %d\n",x,y);
     && y >=  && y <= m && vis[m * (x - ) + y] == false) {
        vis[m * (x - ) + y] = true;
        ) + y];
        ) + y] == 'u') dfs(x - step, y);
        ) + y] == 'd') dfs(x + step, y);
        ) + y] == 'l') dfs(x, y - step);
        ) + y] == 'r') dfs(x, y + step);
    }
}

 && y <= m && y >= )ind[m * (x - ) + y]++;}

void check(int x, int y) {
    ) + y];
    ) + y] == 'u') mflag(x - step, y);
    ) + y] == 'd') mflag(x + step, y);
    ) + y] == 'l') mflag(x, y - step);
    ) + y] == 'r') mflag(x, y + step);
}

int main() {
    int t;
    scanf("%d", &t);
    while (t--) {
        scanf("%d%d", &n, &m);
        ;i<=n*m;i++) vis[i]=;
        ;i<=n;i++) scanf()+m+);
        ; i <= n; i++)
            ; j <= m; j++)
                scanf() + j]),check(i, j);
        ,startj=;
        ; i <= n; i++) {
            bool tr = false;
            ; j <= m; j++) {
                ) * m + j] == ) {
                    starti=i,startj=j;
                    tr = true;
                    break;
                }
            }
            if (tr) break;
        }
        dfs(starti,startj);
        bool flag = true;
        ;i<=n*m;i++)
            if(!vis[i]) flag=false;
        if (flag) printf("Yes\n");
        else printf("No\n");
    }
    ;
}

B.Grid with Arrows-The 2019 ICPC China Shaanxi Provincial Programming Contest的更多相关文章

  1. C.0689-The 2019 ICPC China Shaanxi Provincial Programming Contest

    We call a string as a 0689-string if this string only consists of digits '0', '6', '8' and '9'. Give ...

  2. 计蒜客 39272.Tree-树链剖分(点权)+带修改区间异或和 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest E.) 2019ICPC西安邀请赛现场赛重现赛

    Tree Ming and Hong are playing a simple game called nim game. They have nn piles of stones numbered  ...

  3. 计蒜客 39280.Travel-二分+最短路dijkstra-二分过程中保存结果,因为二分完最后的不一定是结果 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest M.) 2019ICPC西安邀请赛现场赛重现赛

    Travel There are nn planets in the MOT galaxy, and each planet has a unique number from 1 \sim n1∼n. ...

  4. 计蒜客 39279.Swap-打表找规律 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest L.) 2019ICPC西安邀请赛现场赛重现赛

    Swap There is a sequence of numbers of length nn, and each number in the sequence is different. Ther ...

  5. 计蒜客 39270.Angel's Journey-简单的计算几何 ((The 2019 ACM-ICPC China Shannxi Provincial Programming Contest C.) 2019ICPC西安邀请赛现场赛重现赛

    Angel's Journey “Miyane!” This day Hana asks Miyako for help again. Hana plays the part of angel on ...

  6. 计蒜客 39268.Tasks-签到 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest A.) 2019ICPC西安邀请赛现场赛重现赛

    Tasks It's too late now, but you still have too much work to do. There are nn tasks on your list. Th ...

  7. The 2019 ACM-ICPC China Shannxi Provincial Programming Contest (西安邀请赛重现) J. And And And

    链接:https://nanti.jisuanke.com/t/39277 思路: 一开始看着很像树分治,就用树分治写了下,发现因为异或操作的特殊性,我们是可以优化树分治中的容斥操作的,不合理的情况只 ...

  8. The 2018 ACM-ICPC China JiangSu Provincial Programming Contest快速幂取模及求逆元

    题目来源 The 2018 ACM-ICPC China JiangSu Provincial Programming Contest 35.4% 1000ms 65536K Persona5 Per ...

  9. The 2018 ACM-ICPC China JiangSu Provincial Programming Contest J. Set

    Let's consider some math problems. JSZKC has a set A=A={1,2,...,N}. He defines a subset of A as 'Meo ...

随机推荐

  1. Xposed模块开发学习记录

    Xposed模块相关API可以参考在线文档: https://api.xposed.info/reference/packages.html     入门教程可以参考: https://github. ...

  2. HihoCoder1665方块游戏([Offer收割]编程练习赛40)(线段树)

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho在玩一款类似俄罗斯方块的游戏.与原版俄罗斯方块不同的是,落下方块都是长度不一的横向长条,并且不能移动也不能变成竖直方 ...

  3. 【C++ Primer 5th】Chapter 1

    1. 每个C++都包含至少一个函数,其中一个必须为main函数,且 main 函数的返回类型必须为 int. 2. 函数定义包括:返回类型,函数名,形参列表,函数体 3. main 函数返回值用来指示 ...

  4. ASP里面令人震撼地自定义Debug类(VBScript)

    不知道用ASP写代码的朋友是不是和我有一样的感受,ASP中最头疼的就是调试程序的时候不方便 我想可能很多朋友都会用这样的方法“response.write ”,然后输出相关的语句来看看是否正确.前几天 ...

  5. JUI web企业应用框架 http://jui.org/

    官方网址: http://jui.org/ 这是一个很好的开发控件

  6. 第七篇 elasticsearch 链接mysql不会更新

    这是我键的索引 "settings":{ "number_of_shards":3, "number_of_replicas":2 }, & ...

  7. koa1创建项目

    1.一定要全局安装(koa1.2和koa2都己经支持)npm install koa-generator -g 2.koa1.2 生成一个test项目,切到test目录并下载依赖 koa testcd ...

  8. 打开Visual Studio Code,rg.exe占用CPU过高

    打开Visual Studio Code,再打开文件-首选项-设置 搜索“followSymlinks” 将“√”给取消掉

  9. HTTP协议格式及基础

    HTTP请求数据: HTTP请求信息由3部分组成: ① 请求方法 URI 协议/版本 ② 请求头(Request Header) ③     请求正文 HTTP 请求 数据 例子举例: GET/sam ...

  10. WebGL three.js学习笔记 6种类型的纹理介绍及应用

    WebGL three.js学习笔记 6种类型的纹理介绍及应用 本文所使用到的demo演示: 高光贴图Demo演示 反光效果Demo演示(因为是加载的模型,所以速度会慢) (一)普通纹理 计算机图形学 ...