BaoBao has just found a grid with $n$ rows and $m$ columns in his left pocket, where the cell in the $j$-th column of the $i$-th row (indicated by $(i, j)$) contains an arrow (pointing either upwards, downwards, leftwards or rightwards) and an integer $a_{i, j}$.

BaoBao decides to play a game with the grid. He will first select a cell as the initial cell and tick it. After ticking a cell (let's say BaoBao has just ticked cell $(i, j)$), BaoBao will go on ticking another cell according to the arrow and the integer in cell $(i, j)$.

  • If the arrow in cell $(i, j)$ points upwards, BaoBao will go on ticking cell $(i-a_{i, j}, j)$ if it exists.
  • If the arrow in cell $(i, j)$ points downwards, BaoBao will go on ticking cell $(i+a_{i, j}, j)$ if it exists.
  • If the arrow in cell $(i, j)$ points leftwards, BaoBao will go on ticking cell $(i, j-a_{i, j})$ if it exists.
  • If the arrow in cell $(i, j)$ points rightwards, BaoBao will go on ticking cell $(i, j+a_{i, j})$ if it exists.

If the cell BaoBao decides to tick does not exist, or if the cell is already ticked, the game ends.

BaoBao is wondering if he can select a proper initial cell, so that he can tick every cell in the grid exactly once before the game ends. Please help him find the answer.

There are multiple test cases. The first line contains an integer $T$, indicating the number of test cases. For each test case:

The first line contains two integers $n$ and $m$ ($1 \le n \times m \le 10^5$), indicating the number of rows and columns of the grid.

For the following $n$ lines, the $i$-th line contains a string $s_i$ consisting of lowercased English letters ($|s_i| = m$, $s_{i, j} \in \{\text{'u' (ascii: 117)}, \text{'d' (ascii: 100)}, \text{'l' (ascii: 108)}, \text{'r' (ascii: 114)}\}$), where $s_{i, j}$ indicates the direction of arrow in cell $(i, j)$.

  • If $s_{i, j} = \text{'u'}$, the arrow in cell $(i, j)$ points upwards.
  • If $s_{i, j} = \text{'d'}$, the arrow in cell $(i, j)$ points downwards.
  • If $s_{i, j} = \text{'l'}$, the arrow in cell $(i, j)$ points leftwards.
  • If $s_{i, j} = \text{'r'}$, the arrow in cell $(i, j)$ points rightwards.

For the following $n$ lines, the $i$-th line contains $m$ integers $a_{i, 1}, a_{i, 2}, \dots, a_{i, m}$ ($1 \le a_{i, j} \le \max(n, m)$), where $a_{i, j}$ indicates the integer in cell $(i, j)$.

It's guaranteed that the sum of $n \times m$ of all test cases does not exceed $10^6$.

For each test case output one line. If BaoBao can find a proper initial cell, print "Yes" (without quotes), otherwise print "No" (without quotes).


题目概要:给定一个地图,每个地图的点给定下一步的方向和步长,问能否寻找到一点,可以遍历整个地图

为了进行操作,我们先将每个点的入度进行统计,先从0入度的点进行一次bfs(因为dfs好写,先写了dfs,看来数据不是很严格),看是否所有点都访问过了,如果有没有访问过的,说明不能遍历,特别的,如果没有0入度的点,说明任一点都可以通达,我们既可以随便dfs,也可以直接判正确

以下代码:

#include <cstdio>
#include <cstring>
#include <queue>

;
char str[MAXN];
int dig[MAXN];
int vis[MAXN];
int ind[MAXN];
int n, m;

void dfs(int x, int y) {
    //printf("%d %d\n",x,y);
     && y >=  && y <= m && vis[m * (x - ) + y] == false) {
        vis[m * (x - ) + y] = true;
        ) + y];
        ) + y] == 'u') dfs(x - step, y);
        ) + y] == 'd') dfs(x + step, y);
        ) + y] == 'l') dfs(x, y - step);
        ) + y] == 'r') dfs(x, y + step);
    }
}

 && y <= m && y >= )ind[m * (x - ) + y]++;}

void check(int x, int y) {
    ) + y];
    ) + y] == 'u') mflag(x - step, y);
    ) + y] == 'd') mflag(x + step, y);
    ) + y] == 'l') mflag(x, y - step);
    ) + y] == 'r') mflag(x, y + step);
}

int main() {
    int t;
    scanf("%d", &t);
    while (t--) {
        scanf("%d%d", &n, &m);
        ;i<=n*m;i++) vis[i]=;
        ;i<=n;i++) scanf()+m+);
        ; i <= n; i++)
            ; j <= m; j++)
                scanf() + j]),check(i, j);
        ,startj=;
        ; i <= n; i++) {
            bool tr = false;
            ; j <= m; j++) {
                ) * m + j] == ) {
                    starti=i,startj=j;
                    tr = true;
                    break;
                }
            }
            if (tr) break;
        }
        dfs(starti,startj);
        bool flag = true;
        ;i<=n*m;i++)
            if(!vis[i]) flag=false;
        if (flag) printf("Yes\n");
        else printf("No\n");
    }
    ;
}

B.Grid with Arrows-The 2019 ICPC China Shaanxi Provincial Programming Contest的更多相关文章

  1. C.0689-The 2019 ICPC China Shaanxi Provincial Programming Contest

    We call a string as a 0689-string if this string only consists of digits '0', '6', '8' and '9'. Give ...

  2. 计蒜客 39272.Tree-树链剖分(点权)+带修改区间异或和 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest E.) 2019ICPC西安邀请赛现场赛重现赛

    Tree Ming and Hong are playing a simple game called nim game. They have nn piles of stones numbered  ...

  3. 计蒜客 39280.Travel-二分+最短路dijkstra-二分过程中保存结果,因为二分完最后的不一定是结果 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest M.) 2019ICPC西安邀请赛现场赛重现赛

    Travel There are nn planets in the MOT galaxy, and each planet has a unique number from 1 \sim n1∼n. ...

  4. 计蒜客 39279.Swap-打表找规律 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest L.) 2019ICPC西安邀请赛现场赛重现赛

    Swap There is a sequence of numbers of length nn, and each number in the sequence is different. Ther ...

  5. 计蒜客 39270.Angel's Journey-简单的计算几何 ((The 2019 ACM-ICPC China Shannxi Provincial Programming Contest C.) 2019ICPC西安邀请赛现场赛重现赛

    Angel's Journey “Miyane!” This day Hana asks Miyako for help again. Hana plays the part of angel on ...

  6. 计蒜客 39268.Tasks-签到 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest A.) 2019ICPC西安邀请赛现场赛重现赛

    Tasks It's too late now, but you still have too much work to do. There are nn tasks on your list. Th ...

  7. The 2019 ACM-ICPC China Shannxi Provincial Programming Contest (西安邀请赛重现) J. And And And

    链接:https://nanti.jisuanke.com/t/39277 思路: 一开始看着很像树分治,就用树分治写了下,发现因为异或操作的特殊性,我们是可以优化树分治中的容斥操作的,不合理的情况只 ...

  8. The 2018 ACM-ICPC China JiangSu Provincial Programming Contest快速幂取模及求逆元

    题目来源 The 2018 ACM-ICPC China JiangSu Provincial Programming Contest 35.4% 1000ms 65536K Persona5 Per ...

  9. The 2018 ACM-ICPC China JiangSu Provincial Programming Contest J. Set

    Let's consider some math problems. JSZKC has a set A=A={1,2,...,N}. He defines a subset of A as 'Meo ...

随机推荐

  1. QWidget、QMainWindow、QFrame、QWindow、QDialog、QScrollArea区别

    QWidget是所有可视化控件的基类,可以直接渲染出一个窗口来. QMainWindow用来表示一个主窗口,这个主窗口可以设置菜单和工具栏 QFrame用来表示一个框架,用来当作容器,因为可以设置它的 ...

  2. HasnMap的一种遍历方式:Map.Entry 和 Map.entrySet()

    1.Map.Entry 和 Map.entrySet()分别是什么?  Map.entrySet():根据名字便可知道,这是一个集合,是一个映射项的set. Map.Entry<k,v>: ...

  3. Python解决中文字符的问题

    from __future__ import unicode_literals print(type("test")) #<type 'unicode'> Chinat ...

  4. js中eval详解

    先来说eval的用法,内容比较简单,熟悉的可以跳过   eval函数接收一个参数s,如果s不是字符串,则直接返回s.否则执行s语句.如果s语句执行结果是一个值,则返回此值,否则返回undefined. ...

  5. oracle rac的特征

    oracle rac的特征 1. spfile 参数文件需要被所有节点访问,需要放在共享存储上. 2. Redo ThreadRAC 环境下有多个实例,每个实例都需要有自己的一套Redo log 文件 ...

  6. Python:collections的deque()方法

    转于:https://www.cnblogs.com/zhenwei66/p/6598996.html 博主:http://www.cnblogs.com/zhenwei66/(渐晨) python3 ...

  7. 人物-IT-张志东:张志东

    ylbtech-人物-IT-张志东:张志东 张志东,广东东莞人,腾讯创办人之一,腾讯高级副总裁兼科技总裁,于1993年取得深圳大学理学学士学位,并于1996年取得华南理工大学计算机应用及系统架构硕士学 ...

  8. mybatis---demo1--(缓存)----bai

    News-mapper.xml 配置: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE ma ...

  9. ES6学习之let和const

    1.let 基本用法:let声明的变量,只在let命令所在的代码块内有效 { let a = 1; var b = 2; } console.log(a) //a is not defined con ...

  10. JavaScript中对象的属性

    在JavaScript中,属性决定了一个对象的状态,本文详细的研究了它们是如何工作的. 属性类型 JavaScript中有三种不同类型的属性:命名数据属性(named data properties) ...