Perceptual Generative Adversarial Networks for Small Object Detection

2017CVPR 新鲜出炉的paper,这是针对small object detection的一篇文章,采用PGAN来提升small object detection任务的performance。

最近也没做object detection,只是别人推荐了这篇paper,看了摘要觉得通俗易懂就往下看了。。。最后发现还是没怎么搞懂,只是明白PGAN的模型。如果理解有误的地方,请指出。

言归正传,PGAN为什么对small object有效?具体是这样,small object 不好检测,而large object好检测,那PGAN就让generator 学习一个映射,把small object 的features 映射成 large object 的features,然后就好检测了。PGAN呢,主要就看它的generator。

传统GAN中的generator是学习从随机噪声到图像的映射,也就是generator可以把一个噪声变成图片,而PGAN的思想是让generator把small object 变成 large object,这样就有利于检测了。 来看看文章中的原话都是怎么介绍generator的:

  1. we address the small object detection problem by developing a single architecture that internally lifts representations of small objects to “super-resolved” ones, achieving similar characteristics as large objects
  2. Perceptual Generative Adversarial Network (Perceptual GAN) model that improves small object detection through narrowing representation difference of small objects from the large ones.
  3. generator learns to transfer perceived poor representations of the small objects to super-resolved ones
  4. The Perceptual GAN aims to enhance the representations of small objects to be similar to those of large object
  5. the generator is a deep residual based feature generative model which transforms the original poor features of small objects to highly discriminative ones by introducing fine-grained details from lower-level layers, achieving “super-resolution” on the intermediate representations

    6.传统的generator G represents a generator that learns to map data z from the noise distribution pz(z) to the distribution pdata(x) over data x,而PGAN的generator中 x and z are the representations for large objects and small objects
  6. The generator network aims to generate super-resolved representations for small objects to improve detection accurac
  7. the generator as a deep residual learning network that augments the representations of small objects to super-resolved ones by introducing more fine-grained details absent from the small objects through residual learning

文章在不同地方不断的重复了一个意思,就是generator学习的是一个映射,这个映射就是把假(small object)的变成真(large object)的

来看看generator长什么样子

分两个部分,这里就没看懂是什么意思了,或许和object detection有关了。最终得出的结果是Super-Resolved Features 这个就很像Large Objects Featuresle. 如图,左下角是G生成的,左上角是真实的:

讲完了generator 就到discriminator了,这里的discrimintor和传统的GAN也有不一样的地方。

在这里,加入了一个新的loss,叫做perceptual loss ,PGAN也因此而得名(我猜的,很明显嘛)这个loss我也是没看明白的地方,贴原文大家看看吧(有理解的这部分的同学,请在评论区讲一讲,供大家学习)

1. justify the detection accuracy benefiting from the generated super-resolved features with a perceptual loss

看完paper感觉作者没有很直接说提出PGAN是inspired by哪些文章~不过GAN(2014 Goodfellow)

【文献阅读】Perceptual Generative Adversarial Networks for Small Object Detection –CVPR-2017的更多相关文章

  1. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  2. Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 感知生成对抗网络用于目标检测 论文链接:https://ar ...

  3. 文献阅读报告 - Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks

    paper:Gupta A , Johnson J , Fei-Fei L , et al. Social GAN: Socially Acceptable Trajectories with Gen ...

  4. CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks阅读笔记

    CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks 2020 CVPR 2005.09544.pdf ...

  5. 生成对抗网络(Generative Adversarial Networks,GAN)初探

    1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...

  6. 语音合成论文翻译:2019_MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis

    论文地址:MelGAN:条件波形合成的生成对抗网络 代码地址:https://github.com/descriptinc/melgan-neurips 音频实例:https://melgan-neu ...

  7. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  8. 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks

    Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...

  9. 《Self-Attention Generative Adversarial Networks》里的注意力计算

    前天看了 criss-cross 里的注意力模型  仔细理解了  在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...

随机推荐

  1. hdu 1501 Zipper dfs

    题目链接: HDU - 1501 Given three strings, you are to determine whether the third string can be formed by ...

  2. Bean的实例化--静态工厂

    1,创建实体类User package com.songyan.demo1; /** * 要创建的对象类 * @author sy * */ public class User { private S ...

  3. linux命令详解:jobs命令

    转:http://www.cnblogs.com/lwgdream/p/3413571.html 前言 我们可以将一个程序放到后台执行,这样它就不占用当前终端,我们可以做其他事情.而jobs命令用来查 ...

  4. springMVC初探视图解析器——ResourceBundleViewResolver

    视图解析器ResourceBundleViewResolver是根据proterties文件来找对应的视图来解析”逻辑视图“的, 该properties文件默认是放在classpath路径下的view ...

  5. Android录制视频报错setVideoSize called in a invalid state 1

    录制视频时想获取手机支持的录制视频的分辨率,使用代码如下: List<Camera.Size> videoSize = camera.getParameters().getSupporte ...

  6. [置顶] 使用kube-proxy让外部网络访问K8S service的ClusterIP

    配置方式 kubernetes版本大于或者等于1.2时,外部网络(即非K8S集群内的网络)访问cluster IP的办法是: 修改master的/etc/kubernetes/proxy,把KUBE_ ...

  7. Python 最火 IDE 最受欢迎(转载)

    来自:开源中国社区 链接:https://www.oschina.net/news/86973/packt-skill-up-2017 电子书网站 Packt 刚刚发布了第三届 “Skill UP” ...

  8. 初识Nginx及编译安装Nginx

    初识Nginx及编译安装Nginx 环境说明: 系统版本    CentOS 6.9 x86_64 软件版本    nginx-1.12.2 1.什么是Nginx? 如果你听说或使用过Apache软件 ...

  9. cocos2d-x 3.0 场景切换特效汇总

    cocos2d-x 3.0中场景切换特效比較多,并且游戏开发中也常常须要用到这些特效.来使场景切换时不至于那么干巴,遂这里汇总一下,开发中使用. 场景切换用到导演类Directory,大多数用的都是替 ...

  10. CodeForces 659E New Reform

    题意:给你一个无向图,如今要求你把边改成有向的. 使得入度为0的点最少,输出有多少个点入度为0 思路:脑补一波结论.假设有环的话显然没有点入度为0,其余则至少有一个点入度为0,然后就DFS一波就能够了 ...