【文献阅读】Perceptual Generative Adversarial Networks for Small Object Detection –CVPR-2017
Perceptual Generative Adversarial Networks for Small Object Detection
2017CVPR 新鲜出炉的paper,这是针对small object detection的一篇文章,采用PGAN来提升small object detection任务的performance。
最近也没做object detection,只是别人推荐了这篇paper,看了摘要觉得通俗易懂就往下看了。。。最后发现还是没怎么搞懂,只是明白PGAN的模型。如果理解有误的地方,请指出。
言归正传,PGAN为什么对small object有效?具体是这样,small object 不好检测,而large object好检测,那PGAN就让generator 学习一个映射,把small object 的features 映射成 large object 的features,然后就好检测了。PGAN呢,主要就看它的generator。
传统GAN中的generator是学习从随机噪声到图像的映射,也就是generator可以把一个噪声变成图片,而PGAN的思想是让generator把small object 变成 large object,这样就有利于检测了。 来看看文章中的原话都是怎么介绍generator的:
- we address the small object detection problem by developing a single architecture that internally lifts representations of small objects to “super-resolved” ones, achieving similar characteristics as large objects
- Perceptual Generative Adversarial Network (Perceptual GAN) model that improves small object detection through narrowing representation difference of small objects from the large ones.
- generator learns to transfer perceived poor representations of the small objects to super-resolved ones
- The Perceptual GAN aims to enhance the representations of small objects to be similar to those of large object
- the generator is a deep residual based feature generative model which transforms the original poor features of small objects to highly discriminative ones by introducing fine-grained details from lower-level layers, achieving “super-resolution” on the intermediate representations
6.传统的generator G represents a generator that learns to map data z from the noise distribution pz(z) to the distribution pdata(x) over data x,而PGAN的generator中 x and z are the representations for large objects and small objects - The generator network aims to generate super-resolved representations for small objects to improve detection accurac
- the generator as a deep residual learning network that augments the representations of small objects to super-resolved ones by introducing more fine-grained details absent from the small objects through residual learning
文章在不同地方不断的重复了一个意思,就是generator学习的是一个映射,这个映射就是把假(small object)的变成真(large object)的
来看看generator长什么样子
分两个部分,这里就没看懂是什么意思了,或许和object detection有关了。最终得出的结果是Super-Resolved Features 这个就很像Large Objects Featuresle. 如图,左下角是G生成的,左上角是真实的:
讲完了generator 就到discriminator了,这里的discrimintor和传统的GAN也有不一样的地方。
在这里,加入了一个新的loss,叫做perceptual loss ,PGAN也因此而得名(我猜的,很明显嘛)这个loss我也是没看明白的地方,贴原文大家看看吧(有理解的这部分的同学,请在评论区讲一讲,供大家学习)
1. justify the detection accuracy benefiting from the generated super-resolved features with a perceptual loss
看完paper感觉作者没有很直接说提出PGAN是inspired by哪些文章~不过GAN(2014 Goodfellow)
【文献阅读】Perceptual Generative Adversarial Networks for Small Object Detection –CVPR-2017的更多相关文章
- Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection
Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11 19:47:46 CVPR 20 ...
- Perceptual Generative Adversarial Networks for Small Object Detection
Perceptual Generative Adversarial Networks for Small Object Detection 感知生成对抗网络用于目标检测 论文链接:https://ar ...
- 文献阅读报告 - Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks
paper:Gupta A , Johnson J , Fei-Fei L , et al. Social GAN: Socially Acceptable Trajectories with Gen ...
- CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks阅读笔记
CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks 2020 CVPR 2005.09544.pdf ...
- 生成对抗网络(Generative Adversarial Networks,GAN)初探
1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...
- 语音合成论文翻译:2019_MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis
论文地址:MelGAN:条件波形合成的生成对抗网络 代码地址:https://github.com/descriptinc/melgan-neurips 音频实例:https://melgan-neu ...
- StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 本文将利 ...
- 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks
Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...
- 《Self-Attention Generative Adversarial Networks》里的注意力计算
前天看了 criss-cross 里的注意力模型 仔细理解了 在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...
随机推荐
- linux 服务器信息查看
写项目总结报告,需要统计需要系统的配合 1.# uname -a (Linux查看版本当前操作系统内核信息) Linux localhost.localdomain 2.4.20-8 #1 Thu ...
- Java多线程设计模式(4)线程池模式
前序: Thread-Per-Message Pattern,是一种对于每个命令或请求,都分配一个线程,由这个线程执行工作.它将“委托消息的一端”和“执行消息的一端”用两个不同的线程来实现.该线程模式 ...
- JAVA生成问答式验证码图片,支持加减算法
原文:http://liuguihua0823.iteye.com/blog/1511355 import java.awt.Color; import java.awt.Font; import j ...
- Android AIDL实例解析
AIDL这项技术在我们的开发中一般来说并不是很常用,虽然自己也使用新浪微博的SSO登录,其原理就是使用AIDL,但是自己一直没有动手完整的写过AIDL的例子,所以就有了这篇简单的文章. AIDL(An ...
- 关于Android导入开源项目:Error:Unable to load class 'org.gradle.api.publication.maven.internal.DefaultMavenFa
在导入开源项目时,有可能会要求需要maven插件,并报出一下错误: 对于没有安装maven插件的开发者来说,要去下载一个maven插件也许不困难,但是,有时候可能会像我一样懒,不去下载插件,那么我们可 ...
- easyUI样式之easyui-switchbutton
HTML文件 <tr> <th>是否发送短信:</th> <td> <input id="sendTxt" name=&quo ...
- 本地启动tomcat的时候报内存溢出错误:java.util.concurrent.ExecutionException: java.lang.OutOfMemoryError: PermGen space
问题分析: PermGen space的全称是Permanent Generation space,是指内存的永久保存区域,这块内存主要是被JVM存放Class和Meta信息的,Class在被Load ...
- C#字符串操作大全
===============================字符串基本操作================================ 一.C#中字符串的建立过程 例如定义变量 strT=&qu ...
- ANGULARJS: UNDERSTANDING DIRECTIVE SCOPE
https://www.3pillarglobal.com/insights/angularjs-understanding-directive-scope --------------------- ...
- SELinux的Docker安全性
原文译自:http://opensource.com/business/14/7/docker-security-selinux 这篇文章基于我今年在DockerCon一个讲座,它将讨论我们当前听到的 ...