【文献阅读】Perceptual Generative Adversarial Networks for Small Object Detection –CVPR-2017
Perceptual Generative Adversarial Networks for Small Object Detection
2017CVPR 新鲜出炉的paper,这是针对small object detection的一篇文章,采用PGAN来提升small object detection任务的performance。
最近也没做object detection,只是别人推荐了这篇paper,看了摘要觉得通俗易懂就往下看了。。。最后发现还是没怎么搞懂,只是明白PGAN的模型。如果理解有误的地方,请指出。
言归正传,PGAN为什么对small object有效?具体是这样,small object 不好检测,而large object好检测,那PGAN就让generator 学习一个映射,把small object 的features 映射成 large object 的features,然后就好检测了。PGAN呢,主要就看它的generator。
传统GAN中的generator是学习从随机噪声到图像的映射,也就是generator可以把一个噪声变成图片,而PGAN的思想是让generator把small object 变成 large object,这样就有利于检测了。 来看看文章中的原话都是怎么介绍generator的:
- we address the small object detection problem by developing a single architecture that internally lifts representations of small objects to “super-resolved” ones, achieving similar characteristics as large objects
- Perceptual Generative Adversarial Network (Perceptual GAN) model that improves small object detection through narrowing representation difference of small objects from the large ones.
- generator learns to transfer perceived poor representations of the small objects to super-resolved ones
- The Perceptual GAN aims to enhance the representations of small objects to be similar to those of large object
- the generator is a deep residual based feature generative model which transforms the original poor features of small objects to highly discriminative ones by introducing fine-grained details from lower-level layers, achieving “super-resolution” on the intermediate representations
6.传统的generator G represents a generator that learns to map data z from the noise distribution pz(z) to the distribution pdata(x) over data x,而PGAN的generator中 x and z are the representations for large objects and small objects - The generator network aims to generate super-resolved representations for small objects to improve detection accurac
- the generator as a deep residual learning network that augments the representations of small objects to super-resolved ones by introducing more fine-grained details absent from the small objects through residual learning
文章在不同地方不断的重复了一个意思,就是generator学习的是一个映射,这个映射就是把假(small object)的变成真(large object)的
来看看generator长什么样子
分两个部分,这里就没看懂是什么意思了,或许和object detection有关了。最终得出的结果是Super-Resolved Features 这个就很像Large Objects Featuresle. 如图,左下角是G生成的,左上角是真实的:
讲完了generator 就到discriminator了,这里的discrimintor和传统的GAN也有不一样的地方。
在这里,加入了一个新的loss,叫做perceptual loss ,PGAN也因此而得名(我猜的,很明显嘛)这个loss我也是没看明白的地方,贴原文大家看看吧(有理解的这部分的同学,请在评论区讲一讲,供大家学习)
1. justify the detection accuracy benefiting from the generated super-resolved features with a perceptual loss
看完paper感觉作者没有很直接说提出PGAN是inspired by哪些文章~不过GAN(2014 Goodfellow)
【文献阅读】Perceptual Generative Adversarial Networks for Small Object Detection –CVPR-2017的更多相关文章
- Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection
Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11 19:47:46 CVPR 20 ...
- Perceptual Generative Adversarial Networks for Small Object Detection
Perceptual Generative Adversarial Networks for Small Object Detection 感知生成对抗网络用于目标检测 论文链接:https://ar ...
- 文献阅读报告 - Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks
paper:Gupta A , Johnson J , Fei-Fei L , et al. Social GAN: Socially Acceptable Trajectories with Gen ...
- CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks阅读笔记
CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks 2020 CVPR 2005.09544.pdf ...
- 生成对抗网络(Generative Adversarial Networks,GAN)初探
1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...
- 语音合成论文翻译:2019_MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis
论文地址:MelGAN:条件波形合成的生成对抗网络 代码地址:https://github.com/descriptinc/melgan-neurips 音频实例:https://melgan-neu ...
- StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 本文将利 ...
- 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks
Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...
- 《Self-Attention Generative Adversarial Networks》里的注意力计算
前天看了 criss-cross 里的注意力模型 仔细理解了 在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...
随机推荐
- hdu 1501 Zipper dfs
题目链接: HDU - 1501 Given three strings, you are to determine whether the third string can be formed by ...
- Bean的实例化--静态工厂
1,创建实体类User package com.songyan.demo1; /** * 要创建的对象类 * @author sy * */ public class User { private S ...
- linux命令详解:jobs命令
转:http://www.cnblogs.com/lwgdream/p/3413571.html 前言 我们可以将一个程序放到后台执行,这样它就不占用当前终端,我们可以做其他事情.而jobs命令用来查 ...
- springMVC初探视图解析器——ResourceBundleViewResolver
视图解析器ResourceBundleViewResolver是根据proterties文件来找对应的视图来解析”逻辑视图“的, 该properties文件默认是放在classpath路径下的view ...
- Android录制视频报错setVideoSize called in a invalid state 1
录制视频时想获取手机支持的录制视频的分辨率,使用代码如下: List<Camera.Size> videoSize = camera.getParameters().getSupporte ...
- [置顶]
使用kube-proxy让外部网络访问K8S service的ClusterIP
配置方式 kubernetes版本大于或者等于1.2时,外部网络(即非K8S集群内的网络)访问cluster IP的办法是: 修改master的/etc/kubernetes/proxy,把KUBE_ ...
- Python 最火 IDE 最受欢迎(转载)
来自:开源中国社区 链接:https://www.oschina.net/news/86973/packt-skill-up-2017 电子书网站 Packt 刚刚发布了第三届 “Skill UP” ...
- 初识Nginx及编译安装Nginx
初识Nginx及编译安装Nginx 环境说明: 系统版本 CentOS 6.9 x86_64 软件版本 nginx-1.12.2 1.什么是Nginx? 如果你听说或使用过Apache软件 ...
- cocos2d-x 3.0 场景切换特效汇总
cocos2d-x 3.0中场景切换特效比較多,并且游戏开发中也常常须要用到这些特效.来使场景切换时不至于那么干巴,遂这里汇总一下,开发中使用. 场景切换用到导演类Directory,大多数用的都是替 ...
- CodeForces 659E New Reform
题意:给你一个无向图,如今要求你把边改成有向的. 使得入度为0的点最少,输出有多少个点入度为0 思路:脑补一波结论.假设有环的话显然没有点入度为0,其余则至少有一个点入度为0,然后就DFS一波就能够了 ...