Perceptual Generative Adversarial Networks for Small Object Detection

2017CVPR 新鲜出炉的paper,这是针对small object detection的一篇文章,采用PGAN来提升small object detection任务的performance。

最近也没做object detection,只是别人推荐了这篇paper,看了摘要觉得通俗易懂就往下看了。。。最后发现还是没怎么搞懂,只是明白PGAN的模型。如果理解有误的地方,请指出。

言归正传,PGAN为什么对small object有效?具体是这样,small object 不好检测,而large object好检测,那PGAN就让generator 学习一个映射,把small object 的features 映射成 large object 的features,然后就好检测了。PGAN呢,主要就看它的generator。

传统GAN中的generator是学习从随机噪声到图像的映射,也就是generator可以把一个噪声变成图片,而PGAN的思想是让generator把small object 变成 large object,这样就有利于检测了。 来看看文章中的原话都是怎么介绍generator的:

  1. we address the small object detection problem by developing a single architecture that internally lifts representations of small objects to “super-resolved” ones, achieving similar characteristics as large objects
  2. Perceptual Generative Adversarial Network (Perceptual GAN) model that improves small object detection through narrowing representation difference of small objects from the large ones.
  3. generator learns to transfer perceived poor representations of the small objects to super-resolved ones
  4. The Perceptual GAN aims to enhance the representations of small objects to be similar to those of large object
  5. the generator is a deep residual based feature generative model which transforms the original poor features of small objects to highly discriminative ones by introducing fine-grained details from lower-level layers, achieving “super-resolution” on the intermediate representations

    6.传统的generator G represents a generator that learns to map data z from the noise distribution pz(z) to the distribution pdata(x) over data x,而PGAN的generator中 x and z are the representations for large objects and small objects
  6. The generator network aims to generate super-resolved representations for small objects to improve detection accurac
  7. the generator as a deep residual learning network that augments the representations of small objects to super-resolved ones by introducing more fine-grained details absent from the small objects through residual learning

文章在不同地方不断的重复了一个意思,就是generator学习的是一个映射,这个映射就是把假(small object)的变成真(large object)的

来看看generator长什么样子

分两个部分,这里就没看懂是什么意思了,或许和object detection有关了。最终得出的结果是Super-Resolved Features 这个就很像Large Objects Featuresle. 如图,左下角是G生成的,左上角是真实的:

讲完了generator 就到discriminator了,这里的discrimintor和传统的GAN也有不一样的地方。

在这里,加入了一个新的loss,叫做perceptual loss ,PGAN也因此而得名(我猜的,很明显嘛)这个loss我也是没看明白的地方,贴原文大家看看吧(有理解的这部分的同学,请在评论区讲一讲,供大家学习)

1. justify the detection accuracy benefiting from the generated super-resolved features with a perceptual loss

看完paper感觉作者没有很直接说提出PGAN是inspired by哪些文章~不过GAN(2014 Goodfellow)

【文献阅读】Perceptual Generative Adversarial Networks for Small Object Detection –CVPR-2017的更多相关文章

  1. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  2. Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 感知生成对抗网络用于目标检测 论文链接:https://ar ...

  3. 文献阅读报告 - Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks

    paper:Gupta A , Johnson J , Fei-Fei L , et al. Social GAN: Socially Acceptable Trajectories with Gen ...

  4. CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks阅读笔记

    CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks 2020 CVPR 2005.09544.pdf ...

  5. 生成对抗网络(Generative Adversarial Networks,GAN)初探

    1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...

  6. 语音合成论文翻译:2019_MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis

    论文地址:MelGAN:条件波形合成的生成对抗网络 代码地址:https://github.com/descriptinc/melgan-neurips 音频实例:https://melgan-neu ...

  7. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  8. 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks

    Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...

  9. 《Self-Attention Generative Adversarial Networks》里的注意力计算

    前天看了 criss-cross 里的注意力模型  仔细理解了  在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...

随机推荐

  1. 使用Bundle在Activity间传递数据

    使用Bundle在Activity间传递数据 源Activity public class SourceActivty extends Activity { private Intent intent ...

  2. Word中设置所有西文字体为新罗马

    如图所示,不用一个一个设置,在字体里直接设置细纹字体:Times New Roman ,中文字体不用管.

  3. 【Linux】linux下查看目录所在分区

    命令如下: df -h 目录名 具体使用例子如下:查看/home/sxd/文档处于哪个分区 ------------------------------------------------------ ...

  4. XShell命令行使用

    1.建立连接: 2.查看总体目录: 3.查看对应服务目录: 4.删除对应jar包后,再查看目录下文件: 5.上传对应的jar文件: 6.重启服务 7.查看服务日志: 8.mv old-name new ...

  5. 解压缩报错tar: Error is not recoverable: exiting now

    [root@Gris-11140 FMIS2600bak]# tar -zxvf /home/oradata/FMIS2600DMP.tar.gzgzip: stdin: not in gzip fo ...

  6. 使用HttpClient测试SpringMVC的接口

    转载:http://blog.csdn.net/tmaskboy/article/details/52355591 最近在写SSM创建的Web项目,写到一个对外接口时需要做测试,接受json格式的数据 ...

  7. Node.js 文件系统流pipe到Http响应流中

    // 内置http模块,提供了http服务器和客户端功能(path模块也是内置模块,而mime是附加模块) var http=require("http"); var fs=req ...

  8. 不厚道一回->Omnifocus 2 for mac license

    rt, 发个Omnifocus 2 for mac license. 其实Omnifocus 2的价格已经还算亲民了..可惜手贱一下子就找到了,所以没买了..不敢独享,所以分享给需要的人..有能力还是 ...

  9. 渗透测试中的文件传输通道1- cmd下下载文件

    Set xPost = createObject("Microsoft.XMLHTTP")xPost.Open "GET","http://www.x ...

  10. Python_Select解析

    selcet(等待I/O完成)的介绍: select同时监控多个socket,select()的机制提供了fd_set的数据结构,实际是long类型的数组,优点是跨平台性,select的缺点在于单个进 ...