原文地址:http://www.cnblogs.com/GXZlegend/p/6803821.html


题目描述

小B有一个序列,包含N个1~K之间的整数。他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数。小B请你帮助他回答询问。

输入

第一行,三个整数N、M、K。
第二行,N个整数,表示小B的序列。
接下来的M行,每行两个整数L、R。

输出

M行,每行一个整数,其中第i行的整数表示第i个询问的答案。

样例输入

6 4 3
1 3 2 1 1 3
1 4
2 6
3 5
5 6

样例输出

6
9
5
2


题解

莫队算法模板题,优雅的暴力

设原来有n个某颜色,加1后对答案的贡献为(n+1)^2-n^2=2*n+1,减1对答案的贡献为(n-1)^2-n^2=-(2*n-1)。

然后各种区间平移得到答案。

#include <cstdio>
#include <cmath>
#include <algorithm>
#define N 50010
using namespace std;
struct data
{
int l , r , b , p;
}a[N];
int c[N];
long long ans[N] , cnt[N];
bool cmp(data x , data y)
{
return x.b == y.b ? x.r < y.r : x.b < y.b;
}
int main()
{
int n , m , k , i , si , lp = 1 , rp = 0 , now = 0;
scanf("%d%d%d" , &n , &m , &k);
si = (int)sqrt(n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &c[i]);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &a[i].l , &a[i].r) , a[i].b = (a[i].l - 1) / si , a[i].p = i;
sort(a + 1 , a + m + 1 , cmp);
for(i = 1 ; i <= m ; i ++ )
{
while(lp < a[i].l) now -= 2 * cnt[c[lp]] - 1 , cnt[c[lp]] -- , lp ++ ;
while(rp > a[i].r) now -= 2 * cnt[c[rp]] - 1 , cnt[c[rp]] -- , rp -- ;
while(lp > a[i].l) lp -- , now += 2 * cnt[c[lp]] + 1 , cnt[c[lp]] ++ ;
while(rp < a[i].r) rp ++ , now += 2 * cnt[c[rp]] + 1 , cnt[c[rp]] ++ ;
ans[a[i].p] = now;
}
for(i = 1 ; i <= m ; i ++ ) printf("%lld\n" , ans[i]);
return 0;
}

【bzoj3781】小B的询问 莫队算法的更多相关文章

  1. BZOJ3781:小B的询问(莫队)

    Description 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L ...

  2. 【模板】BZOJ 3781: 小B的询问 莫队算法

    http://www.lydsy.com/JudgeOnline/problem.php?id=3781 N个数的序列,每次询问区间中每种数字出现次数的平方和,可以离线. 丢模板: #include ...

  3. 【国家集训队2010】小Z的袜子[莫队算法]

    [莫队算法][国家集训队2010]小Z的袜子 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程, ...

  4. luoguP2709 小B的询问 [莫队]

    题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...

  5. 洛谷P2709 小B的询问 莫队

    小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小 ...

  6. bzoj 2308 小Z的袜子(莫队算法)

    小Z的袜子 [题目链接]小Z的袜子 [题目类型]莫队算法 &题解: 莫队算法第一题吧,建议先看这个理解算法,之后在参考这个就可以写出简洁的代码 我的比第2个少了一次sort,他的跑了1600m ...

  7. 【bzoj5016】[Snoi2017]一个简单的询问 莫队算法

    题目描述 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. 输入 第一行,一个数字N,表 ...

  8. bzoj 2038 小Z的袜子 莫队算法

    题意 给你一个长度序列,有多组询问,每次询问(l,r)任选两个数相同的概率.n <= 50000,数小于等于n. 莫队算法裸题. 莫队算法:将序列分为根号n段,将询问排序,以L所在的块为第一关键 ...

  9. [日常摸鱼]bzoj2038[2009国家集训队]小Z的袜子-莫队算法

    今天来学了下莫队-这题应该就是这个算法的出处了 一篇别人的blog:https://www.cnblogs.com/Paul-Guderian/p/6933799.html 题意:一个序列,$m$次询 ...

随机推荐

  1. CSS中margin: 0 auto;样式没有生效

    问题:有两个元素: A, B.两则是嵌套关系,A是B的父节点.A和B都是块元素.当在A上设置:margin: 0 auto的时候,B并没有在页面中居中. margin: 0 auto 为什么没有生效? ...

  2. Tomcat的部署+第一个Servlet

    Tomcat部署 1.下载tomcat,添加到eclipse 2.配置环境变量(path) 3.win+r,输入Startup(如果没用,就管理员启动命令) 或者找到tomcat安装包,在bin目录找 ...

  3. python基础数据类型之字符串操作

    1.字符串切片ps:字符串是不可变的对象, 所以任何操作对原字符 是不会有任何影响的 s1 = "python最简洁" print(s1[0]) print(s1[1]) prin ...

  4. Java执行存储过程

    1.JDBC调用存储过程: CallableStatement /** *p是要调用的存储过程的名字,存储过程的4个参数,用4个?号占位符代替 *其余地方写法固定 */ CallableStateme ...

  5. 虚拟机桥接模式下多台Ubuntu16.04系统互相连接

    1.首先新建一个虚拟机并在该虚拟机上安装Ubuntu16.04系统.为这台虚拟机起名为Ubuntu3. 2.对Ubuntu3进行克隆,为新克隆生成的虚拟机起名为Ubuntu2.(这时我们会发现Ubun ...

  6. day1_作业2(三级菜单)

    #!/usr/local/bin/python3 # -*- coding:utf-8 -*- province={'江苏省':['南京市','苏州市','无锡市'],'浙江省':['杭州市','温州 ...

  7. MySQL触发器和更新操作

    一.触发器概念 触发器(trigger):监视某种情况,并触发某种操作,它是提供给程序员和数据分析员来保证数据完整性的一种方法,它是与表事件相关的特殊的存储过程,它的执行不是由程序调用,也不是手工启动 ...

  8. 初见spark-04(高级算子)

    今天,这个是spark的高级算子的讲解的最后一个章节,今天我们来介绍几个简单的算子, countByKey val rdd1 = sc.parallelize(List(("a", ...

  9. [学习笔记]CSS选择器

    CSS语法结构 selector {     property1 : value;     property2 : value; } 如果包含多个属性,那么属性每个属性的结尾需要有一个分号.如果属性的 ...

  10. 3,Linux入门

    操作系统的分类 Windows系列操作系统,Unix类操作系统,Linux类操作系统,Mac操作系统 提问:为什么要去学习Linux? 同学甲可能要问,超哥你介绍了这么多有关Linux的知识,但我还是 ...