BZOJ3244 [Noi2013]树的计数 【数学期望 + 树遍历】
题目链接
题解
不会做orz
我们要挖掘出\(bfs\)序和\(dfs\)序的性质
①容易知道\(bfs\)序一定是一层一层的,如果我们能确定在\(bfs\)序中各层的断点,就能确定深度
②由于\(bfs\)序和\(dfs\)序儿子遍历顺序是一样的,所以\(bfs\)序同一层的点,在\(dfs\)序中顺序也一样,如果存在\(u,v\)在\(bfs\)中相邻,而在\(dfs\)序中逆序,那么\(u,v\)之间一定有断点
③\(dfs\)序中相邻的两个点\(u,v\)之间\(v\)要么为\(u\)的儿子,要么为\(u\)某个祖先的儿子,若\(v\)的\(bfs\)序大于\(u\)的,那么它们之间之多存在一个断点
④在③中确定的限制区间内,如果包含②中确定的断点,那么就可以确定其余点一定不分层。否则区间内点的顺序一定与\(dfs\)序一样,由于区间端点\(dfs\)序中相邻,所以这个区间只可能限制了一个断点
综上:
①若\(bfs\)序中相邻的在\(dfs\)序中逆序,必有断点
②\(dfs\)序中相邻的在\(bfs\)序中正序,之间最多一个断点,要么已确定期望\(1\)个,要么就只有一个不确定,期望\(0.5\)个
③\(1\)只有必有断点
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 200005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int dfs[maxn],bfs[maxn],pos[maxn],id[maxn],x[maxn],sum[maxn],D[maxn],n;
int main(){
n = read();
REP(i,n) dfs[i] = read();
REP(i,n) bfs[i] = read(),id[bfs[i]] = i;
REP(i,n) dfs[i] = id[dfs[i]],pos[dfs[i]] = i;
x[1] = 1;
for (int i = 2; i < n; i++)
if (pos[i] > pos[i + 1]) x[i] = 1;
for (int i = 1; i <= n; i++) sum[i] = sum[i - 1] + x[i];
for (int i = 1; i < n; i++)
if (dfs[i] < dfs[i + 1]){
if (sum[dfs[i + 1] - 1] - sum[dfs[i] - 1]){
D[dfs[i]]++;
D[dfs[i + 1]]--;
}
}
int tot = 0;
for (int i = 1; i < n; i++){
tot += D[i];
if (!x[i] && tot) x[i] = 2;
}
double ans = 1.0;
for (int i = 1; i < n; i++){
if (x[i] == 1) ans += 1.0;
else if (!x[i]) ans += 0.5;
}
printf("%.3lf\n%.3lf\n%.3lf\n",ans - 0.001,ans,ans + 0.001);
return 0;
}
BZOJ3244 [Noi2013]树的计数 【数学期望 + 树遍历】的更多相关文章
- 2018牛客网暑期ACM多校训练营(第五场) F - take - [数学期望][树状数组]
题目链接:https://www.nowcoder.com/acm/contest/143/F 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K ...
- loj#2665. 「NOI2013」树的计数
目录 题目链接 题解 代码 题目链接 loj#2665. 「NOI2013」树的计数 题解 求树高的期望 对bfs序分层 考虑同时符合dfs和bfs序的树满足什么条件 第一个点要强制分层 对于bfs序 ...
- P2290 [HNOI2004]树的计数(bzoj1211)
洛谷P2290 [HNOI2004]树的计数 bzoj1211 [HNOI2004]树的计数 Description 一个有\(n\)个结点的树,设它的结点分别为\(v_1,v_2,\cdots, v ...
- 【BZOJ3244】【NOI2013】树的计数(神仙题)
[BZOJ3244][NOI2013]树的计数(神仙题) 题面 BZOJ 这题有点假,\(bzoj\)上如果要交的话请输出\(ans-0.001,ans,ans+0.001\) 题解 数的形态和编号没 ...
- [UOJ#122][NOI2013]树的计数
[UOJ#122][NOI2013]树的计数 试题描述 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的 DFS 序以及 BFS 序.两棵不同的树的 DFS 序 ...
- 「NOI2013」树的计数 解题报告
「NOI2013」树的计数 这什么神题 考虑对bfs重新编号为1,2,3...n,然后重新搞一下dfs序 设dfs序为\(dfn_i\),dfs序第\(i\)位对应的节点为\(pos_i\) 一个暴力 ...
- UOJ#122【NOI2013】树的计数
[NOI2013]树的计数 链接:http://uoj.ac/problem/122 按BFS序来,如果$B_i$与$B_{i-1}$必须在同一层,那么贡献为0,必须在不同层那么贡献为1,都可以贡献为 ...
- 【NOI2013模拟】坑带的树(仙人球的同构+圆方树乱搞+计数+HASH)
[NOI2013模拟]坑带的树 题意: 求\(n\)个点,\(m\)条边的同构仙人球个数. \(n\le 1000\) 这是一道怎么看怎么不可做的题. 这种题,肯定是圆方树啦~ 好,那么首先转为广义圆 ...
- 【uoj122】 NOI2013—树的计数
http://uoj.ac/problem/122 (题目链接) 题意 给出一棵树的dfs序和bfs序,保证一定可以构成一棵树.问构成的树的期望深度. Solution 这是一个悲伤的故事,我YY的东 ...
随机推荐
- SSH 登录时出现如下错误:No supported key exchange algorithms
https://help.aliyun.com/knowledge_detail/41486.html
- macOs 使用Homebrew升级到MySQL 8系列之后,php无法连接解决方法
当前时间2018-9-28 在使用brew install mysql 默认安装为 MySQL 8,但是使用php连接到数据库之后,出现了这种错误 (Unexpected server respose ...
- python实现排序之冒泡排序
冒泡排序:是将一串无需的数字,排列成有序的.通过相邻的两个数作比较,大的往后移,经过反复的比较,最后得出一串有序的数列. 那么用代码该如何实现? 其实这个问题的思路就是判断每相邻的两个数,进行大小比较 ...
- 【Python 2 到 3 系列】 print 是函数
v3.0 以前,print一直作为语法结构存在,他是python语法的一部分:这个理解起来可能有点蹩脚,但的确是这样. print 一直被定以为一个statement,也就是说,他跟return/tr ...
- 关于 PHP 程序员技术职业生涯规划
原文地址:http://rango.swoole.com/archives/570 看到很多 PHP 程序员职业规划的文章,都是直接上来就提 Linux.PHP.MySQL.Nginx.Redis.M ...
- 学习Pytbon第十天 函数2 内置方法和匿名函数
print( all([1,-5,3]) )#如果可迭代对象里所有元素都为真则返回真.0不为真print( any([1,2]) )#如果数据里面任意一个数据为真返回则为真a= ascii([1,2, ...
- Linux命令、权限
一.新建用户natasha,uid为1000,gid为555,备注信息为“master”: groupadd -g 555 natasha useradd -u 1000 -g 555 -c mast ...
- 16,docker入门
在学一门新知识的时候,超哥喜欢提问,why?what?how? wiki资料 什么是docker Docker 最初是 dotCloud 公司创始人 Solomon Hykes 在法国期间发起的一 ...
- sprintf()函数使用异常
调试STM32F103,比如如下代码:使用springf函数,这个函数是把最后两个参数先格式化成字符串 ,输出到ERROR_STRING,如果他们合并的长度大于30会出现深情况? ] sprintf( ...
- luogu3343 [ZJOI2015]地震后的幻想乡
ref 前置技能是bzoj的串珠子.这种子集dp好神啊qwq. 还有这种钦定点转移子集的方法建议按这题的方法写,不要看串珠子qwq #include <iostream> #include ...