HDU 3033 组合背包变形 I love sneakers!
I love sneakers!
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4503 Accepted Submission(s):
1845
awesome amount of scholarship. As a great zealot of sneakers, he decides to
spend all his money on them in a sneaker store.
There are
several brands of sneakers that Iserlohn wants to collect, such as Air Jordan
and Nike Pro. And each brand has released various products. For the reason that
Iserlohn is definitely a sneaker-mania, he desires to buy at least one product
for each brand.
Although the fixed price of each product has been labeled,
Iserlohn sets values for each of them based on his own tendency. With handsome
but limited money, he wants to maximize the total value of the shoes he is going
to buy. Obviously, as a collector, he won’t buy the same product twice.
Now,
Iserlohn needs you to help him find the best solution of his problem, which
means to maximize the total value of the products he can buy.
begins with three integers 1<=N<=100 representing the total number of
products, 1 <= M<= 10000 the money Iserlohn gets, and 1<=K<=10
representing the sneaker brands. The following N lines each represents a product
with three positive integers 1<=a<=k, b and c, 0<=b,c<100000,
meaning the brand’s number it belongs, the labeled price, and the value of this
product. Process to End Of File.
maximum total value of the sneakers that Iserlohn purchases. Print "Impossible"
if Iserlohn's demands can’t be satisfied.
1 4 6
2 5 7
3 4 99
1 55 77
2 44 66
分组背包问题,大意**要买鞋,有k种牌子,每种牌子至少买一双鞋子。每双鞋子有标价跟实际价值。求用m多的钱买最多价值的鞋。
其实我觉得这题的难点就在处理“至少”这点上面。
状态方程很多都能推出用 dp[k][m] 来表示 已经买了k种鞋 在有m钱状态下的 鞋的最大价值。
状态转移方程为
for( k = 1 ; k <= K ; k++)
{
for( i = 0 ; i < num[k] ; i++)
{
for( j = mm ; j >= m[k][i].m ; j--)
{
if(dp[k][j - m[k][i].m] != -1)
dp[k][j] = Max(dp[k][j] , dp[k][j - m[k][i].m] + m[k][i].v);
if(dp[k-1][j - m[k][i].m] != -1 )
dp[k][j] = Max(dp[k][j] , dp[k-1][j - m[k][i].m] + m[k][i].v);
}
}
}
如果忽略了两个红色的判断句,大家都看得出这只是单纯的01背包且 没有条件限制,加了这两句就能实现至少了。理由如下
一开始我将dp[][]数组初始化为-1表示所有的数都不合法。大于0表示合法
然后将所有的 k = 0 dp[0][]置为0,这是为了 k = 1时能合法计算。
从状态方程中看出,当上一个状态值为-1时表示他不合法。所以当前状态没有计算的必要也不合法答案。
如果计算完第k类商品的取值后,所有的dp[k][]均为-1的时候,第k类表明没有一鞋被买。故所有状态都不合法,接下来的所有值也都将不合法。
在计算第k组商品的过程中,当某个-1变成一个非负数的时候,也就表明当前的第k种已经拿了第i件物品,所以变成合法答案了。
如此推下去,最后一个值dp[k][m],就是答案了。如果依然是-1,就输出impossible把。
5 13 3
1 2 3
1 4 6
2 10 2
3 2 2
3 1 2
7
m k=0 k=1 k=2 k=3
0 0 -1 -1 -1
1 0 -1 -1 -1
2 0 3 -1 -1
3 0 3 -1 -1
4 0 6 -1 -1
5 0 6 -1 -1
6 0 9 -1 -1
7 0 9 -1 -1
8 0 9 -1 -1
9 0 9 -1 -1
10 0 9 -1 -1
11 0 9 -1 -1
12 0 9 5 -1
13 0 9 5 7
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
struct node{
int w;
int v;
}que[][];
int num[];
int dp[][];
int main(){
int n,m,kk;
while(scanf("%d%d%d",&n,&m,&kk)!=EOF){
memset(num,,sizeof(num));
memset(dp,-,sizeof(dp));
for(int i=;i<=n;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
que[x][num[x]].w=y;
que[x][num[x]].v=z;
num[x]++;
}
for(int i=;i<=m;i++)
dp[][i]=;
for(int i=;i<=kk;i++){
for(int k=;k<num[i];k++){
for(int j=m;j>=que[i][k].w;j--){
if(dp[i][j-que[i][k].w]!=-)
dp[i][j]=max(dp[i][j],dp[i][j-que[i][k].w]+que[i][k].v);
if(dp[i-][j-que[i][k].w]!=-)
dp[i][j]=max(dp[i][j],dp[i-][j-que[i][k].w]+que[i][k].v);
}
}
}
if(dp[kk][m]<)
printf("Impossible\n");
else
printf("%d\n",dp[kk][m]);
}
return ;
}
HDU 3033 组合背包变形 I love sneakers!的更多相关文章
- HDU 3033 分组背包变形(每种至少一个)
I love sneakers! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 1203 01背包变形题,(新思路)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1203 I NEED A OFFER! Time Limit: 2000/1000 MS (Java/ ...
- hdu 3466 01背包变形【背包dp】
http://acm.hdu.edu.cn/showproblem.php?pid=3466 有两个物品P,Q,V分别为 3 5 6, 5 10 5,如果先dp第一个再dp第二个,背包容量至少要为3+ ...
- hdu 2184 01背包变形
转自:http://blog.csdn.net/liuqiyao_01/article/details/8753686 题意:这是又是一道01背包的变体,题目要求选出一些牛,使smartness和fu ...
- hdu 4381(背包变形)
题意: 给定n个块,编号从1到n,以及m个操作,初始时n个块是白色. 操作有2种形式: 1 ai xi : 从[1,ai]选xi个块,将这些块涂白. 2 ai xi:从[ai,n]选xi个块,将这些块 ...
- HDU 3033 分组背包(至少选一个)
分组背包(至少选一个) 我真的搞不懂为什么,所以现在就只能当作是模板来用吧 如果有大牛看见 希望评论告诉我 &代码: #include <cstdio> #include < ...
- HDU 6092 01背包变形
Rikka with Subset Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- HDU 3466 01背包变形
给出物品数量N和总钱数M 对于N个物品.每一个物品有其花费p[i], 特殊值q[i],价值v[i] q[i] 表示当手中剩余的钱数大于q[i]时,才干够买这个物品 首先对N个物品进行 q-p的排序,表 ...
- HDU 3033 分组背包
给出N个物品.M金钱.W种类 给出N个物品的性质:所属种类,花费.价值 求每一种类物品至少一个的前提下,所能购买到的最大价值 dp[i][k]表示在第i种物品.总花费为k的最大价值 dp[i][k]= ...
随机推荐
- device not ready cuda
问题描述: CUDA: 使用cudaEventElapsedTime时返回device not ready error 强调下我是用谷歌大神搜索到的结构哦! http://stackoverflow. ...
- CharSquence 接口的作用,多态以增强String
CharSquence 接口的作用,多态以增强String,CharSquence 可以多态定义 String StringBuffer StringBuilder.
- 懒下载软件,一行代码连接wifi^_^
按键盘的windows+R,输入cmd,回车键 设置语句netsh wlan set hostednetwork mode=allow ssid=user key=possword 按回车键 启动语句 ...
- v-cloak
v-cloak 不需要表达式 用法: 这个指令保持在元素上直到关联实例结束编译.和 CSS 规则如 [v-cloak] { display: none } 一起用时,这个指令可以隐藏未编译的 Must ...
- 给树莓派Raspbian stretch版本修改软件源
树莓派最新的系统版本是stretch,试了阿里和网易的软件源都不行,最后试了清华的可以 deb http://mirrors.tuna.tsinghua.edu.cn/raspbian/raspbia ...
- LeetCode978. 最长湍流子数组
问题:978. 最长湍流子数组 当 A 的子数组 A[i], A[i+1], ..., A[j] 满足下列条件时,我们称其为湍流子数组: 若 i <= k < j,当 k 为奇数时, A[ ...
- OpenLDAP部署目录服务
文档信息 目 的:搭建一套完整的OpenLDAP系统,实现账号的统一管理. 1:OpenLDAP服务端的搭建 ...
- 项目配置中 提示access denied的问题 解决方案
项目配置中 提示access denied的问题,一般原因是你的服务器或虚拟主机的pathinfo没开.... 具体解决办法如下 在PHP安装文件夹下找到php.ini.在文件中搜索cgi.fix_p ...
- 基于THINKPHP+layui+Ajax无刷新实现图片上传预览
<fieldset class="layui-elem-field" style="width:500px;margin:50px 0 0 300px;" ...
- rootfls(根操作系统)
rootfs根文件系统,linux下的任何目录都是rootfs的一个路径 Files 文件 Directory 目录 FHS(文件层级标准)规定了linux发行标准,也就是一些固定的文件存储 文件 ...